




已阅读5页,还剩69页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.,1,ZhangXingming,TheInstituteofComputerScienceandEngineering,Chapter8ObjectRecognition,.,2,8.1知识表示,描述和特征描述:物体的标量特性,称为特征;特征矢量:几个描述组合起来;例如,.,3,2结构描述基元:形成物体的基本单元,由他们的类型信息表示;结构描述:基元和它们之间的关系生成,通过符号构成的链、树和图来描述;语法:字生成器的数学模型;语言:字的集合;,a,a,b,b,c,c,abcabc,.,4,谓词逻辑它为从旧知识中通过演绎得到新知识提供了一种数学形式;处理对象是逻辑变量和量词和逻辑运算符。产生式规则If条件X处理then采取动作Y;,.,5,模糊逻辑克服数值和精确知识表示的明显局限;可以用模糊规则表示知识:ifXisAthenYisB;6语义网络为一个有向图,她的节点表示物体,弧表示物体之间的关系;,.,6,框架,.,7,8.2图象识别系统的基本原理,模式是对某些感兴趣客体的定量或结构描述。模式类就是具有某些共同特性的模式的集合。模式识别就是研究一种自动技术,依靠这种技术,机器将自动(或尽可能少的人工干预)把待识模式分配到各自的模式类中去。这就需要把人们的知识和经验教给机器,为机器制定一些规则和方法,并且让机器能够完成自动识别的任务,这就是模式识别的研究目标。,.,8,.,9,1、预处理它主要完成模式的采集、模数转换、滤波、消除模糊、减少噪声、纠正几何失真等预处理操作。因此也要求相应的设备来实现。,.,10,2、特征或基元提取特征提取实现由模式空间向特征空间的转换,有效地压缩维数。一般地说,它该是在一定分类准则下的最佳或次最佳变换器。模式识别中,分类器的分类规则固然重要,但是,如果所基于的模式特征没有包含足够的待识客体的信息或未能提取反映客体特征的信息,那么,识别的结果将面目全非。所以说,在设计分类器之前,能够快速、有效地进行特征提取是模式识别的关键。不幸的是,直到目前为止还没有形成特征提取的一般理论,随着识别任务的不同,特征提取的方法也不一样。此外,如果待识别的模式样本本身携带反映不同模式本质特性的特征,则特征提取也不一定需要。,.,11,归纳起来,一般常用的方法主要包括:傅立叶分析(FourierTransformation);梅林变换(MeilinTransformation);小波变换(WaveletTransformation);矢量量化(VectorQuantization);神经网络(NeuralNetwork);高阶矩(HigherMoment);,.,12,3、分类训练为了能使分类器有效地进行分类判决,还必须对分类器进行训练(学习)。分类器的训练学习是模式识别的一个重要概念。由于我们研究机器的自动识别,对分类器进行训练,使它学会识别,具有自动识别的能力,尤为重要。众所周知,一个孩子认字尚需一个反复学习过程,何况一部机器要掌握某种判决规则,学习过程更必不可少。当然,对于不同的分类方法,其学习规则也不一样。,.,13,4、分类在完成训练的基础上,分类器根据已经确定的判决规则,对未知类别属性的样本执行判决过程,就是说,分类器具有了自动识别的能力。这是模式识别“出成果”的阶段,直接以其分类结果表明本次识别的结束。显然,这是举足轻重的阶段,弄得不好,会使前几阶段的工作付诸东流。,.,14,8.3统计模式识别,在经典模式识别中,根据用来解决模式识别问题的数学技巧,可以将它分成两种一般的方法,统计模式识别和句法模式识别。原则上讲,聚类分析属统计模式识别的范畴,但其无监督训练的特点,所以将它单独列出。在经典模式识别中,统计模式识别在模式识别技术的发展中一直起着显著的作用,统计决策论和有关领域已成为一个固定的领域,其中实质性的理论进展和创造不断发生,这些发展强有力地冲击于模式识别的应用。按确定论和随机论来分,可分为几何分类法和概率分类法。,.,15,1、几何分类法1)模板匹配法它是模式识别中的一个最原始、最基本的方法,它将待识模式分别与各标准模板进行匹配,若某一模板与待识模式的绝大多数单元均相匹配,则称该模板与待识模式“匹配得好”,反之则称“匹配得不好”,并取匹配最好的作为识别结果。,.,16,2)距离分类法距离是一种重要的相似性度量,通常认为空间中两点距离越近,表示实际上两样本越相似。大约有十余种作为相似性度量的距离函数,其中使用最广泛的是欧氏距离。它是使用最为广泛的方法,常用的有平均样本法、平均距离法、最近邻法和近邻法。,.,17,最近邻分离器,.,18,K近邻分离器,.,19,3)线性判别函数和上述的方法不同,判决函数法是以判决边界的函数形式的假定为其特性的,而上述的方法都是以所考虑的分布的假定为其特性的。假如我们有理由相信一个线性判决边界取成:是合适的话,那么剩下的问题就是要确定它的权系数。权系数可通过感知器算法或最小平方误差算法来实现。但作为一条规则,应用此方法必须注意两点;第一就是方法的可适性问题,第二就是应用判决函数后的误差准则。,.,20,4)非线性判别函数线性判决函数的特点是简单易行,实际应用中许多问题往往是非线性的,一种处理的办法将非线性函数转换为线性判决函数,所以又称为广义线性判决函数。另一种方法借助电场的概念,引入非线性的势函数,它经过训练后即可用来解决模式的分类问题。,.,21,2概率分类法,几何分类法是以模式类几何可分为前提条件的,在某些分类问题中这种条件能得到满足,但这种条件并不经常能得到满足,模式的分布常常不是几何可分的,即在同一区域中可能出现不同的模式,这时,必须借助概率统计这一数学工具。可以说,概率分类法的基石是贝叶斯决策理论。,.,22,设有R类样本,分别为w1,w2,wR,若每类的先验概率为P(wii),i=1,2,3,R,对于一随机矢量,每类的条件概率为(又称类概率密度)P(X/Wii),则根据Bayes公式,后验概率为:从后验概率出发,有Bayes法则:,.,23,以贝叶斯法则为基础,在考虑错误判决和判决风险的情况下,就可以得到最小错误率判决、最小风险判决和最大似然判决等规则。当然,如果先验概率和损失函数没有提供,或没有全部被提供,上述最基本的贝叶斯分类方法就发生了困难。为此,可应用聂曼皮尔逊判决规则和最小最大判决规则。上述方法都可统称为贝叶斯分类器。分类器训练的主要任务是完全确定类概率密度函数。如果训练样本的类别属性是已知的,则称为有监督训练,否则称为无监督训练。对于有监督训练的情况,当已知类概率密度的函数形式时,就要选用参数估计方法,否则就要选用非参数估计的方法。常用的参数估计方法有最大似然估计、贝叶斯估计和贝叶斯学习。非参数估计的任务就是利用已知的训练样本集来估计概率分布密度,常用的方法有Parzen窗法、Kn近邻法和正交级数展开逼近法。对于无监督训练,也有相应的参数估计方法,此处就不详述。,.,24,(1)分类器学习定义:从样本集合中设置分类器参数的方法;训练集:模式和带有类别信息的集合;分类器设置应该是最优或次优的,能够识别那些它没有“见过”的对象;训练集的大小一般逐步增加几次,直到可以取得正确的分类器设置。,.,25,(2)基本性质学习:系统优化的过程;学习目标:使优化准则最小;训练集合有限,学习过程应该具有归纳的特点;学习无法一步完成,是一个循序渐进的过程物体描述实际上是在允许分类错误率、分类时间和分类器构造复杂度之间的折中。,.,26,(3)分类器学习,两个常用方法:概率密度估计和直接损失最小化概率密度估计若概率密度的形式未知,则必须估计概率密度,若已知,则必须估计参数。,.,27,(a)已知,未知(b)未知,已知,.,28,(c)和均未知,.,29,算法学习:计算平均向量和协方差;计算概率密度;计算先验概率;分类:,.,30,3聚类分析,硬C均值聚类算法HCM:设为一模式集,C为聚类的类别数(2c0,thestateisacceptedwithprobability:,.,74,3algorithm:Letxbeavectorofoptimizationparameters;computethevalueoftheobjectiveunctionJ(x);Repeatstep3and4ntimes;Perturbtheparametervectorxslightly,creatingthevectorxnew,andcomputethenewJ(x);Generatearandomnumberr(0,1),fromau
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 绿色环保产业扶持资金2025年申请项目申报流程与政策要点解读报告
- 消防及咨询检测合同范本
- 租房备案合同解除协议书
- 矿山租赁合同协议书范本
- 燃气厂建设工程合同范本
- 汽车买卖协议签的假合同
- 空调移机工程合同协议书
- 阿克苏商铺租赁合同范本
- 自用新能源出售合同范本
- 自由球员合同协议书范本
- 校长一日工作流程
- 《医院感染与手卫生》课件
- 横纹肌溶解症的护理
- 老旧小区PE管道改造方案
- 《城市轨道交通不间断电源(UPS)整合设计规范》
- 2024年考研英语一阅读理解80篇试题及答案
- 2025高考数学专项复习:马尔科夫链(含答案)
- 《提高利润的78个方法》
- 环境卫生学:公共场所卫生
- 街道、镇、区道路保洁及垃圾转运服务采购项目服务方案(投标方案)
- 亚克力uv施工方案
评论
0/150
提交评论