数学人教版九年级上册24.1.2垂直于弦的直径.1.2垂直于弦的直径.ppt_第1页
数学人教版九年级上册24.1.2垂直于弦的直径.1.2垂直于弦的直径.ppt_第2页
数学人教版九年级上册24.1.2垂直于弦的直径.1.2垂直于弦的直径.ppt_第3页
数学人教版九年级上册24.1.2垂直于弦的直径.1.2垂直于弦的直径.ppt_第4页
数学人教版九年级上册24.1.2垂直于弦的直径.1.2垂直于弦的直径.ppt_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

,24.1.2垂直于弦的直径,塔河五中钟宪君,圆的对称性,圆是轴对称图形吗?,如果是,它的对称轴是什么?你能找到多少条对称轴?,你是用什么方法解决上述问题的?,圆是中心对称图形吗?,如果是,它的对称中心是什么?,你又是用什么方法解决这个问题的?,圆的对称性,圆是轴对称图形.,圆的对称轴是任意一条经过圆心的直线,它有无数条对称轴.,可利用折叠的方法即可解决上述问题.,它的对称中心就是圆心.,用旋转的方法即可解决这个问题.,AM=BM,探讨新知:,AB是O的一条弦.,你能发现图中有哪些等量关系?与同伴说说你的想法和理由.,作直径CD,使CDAB,垂足为M.,O,右图是轴对称图形吗?如果是,其对称轴是什么?,由CD是直径,CDAB,做一做,垂径定理,证明:,连接OA,OB,则OA=OB.,在RtOAM和RtOBM中,OA=OB,OM=OM,,RtOAMRtOBM.,AM=BM.,点A和点B关于CD对称.,O关于直径CD对称,当圆沿着直径CD对折时,点A与点B重合,垂径定理三种语言,定理:垂直于弦的直径平分弦,并且平分弦所的两条弧.,老师提示:垂径定理是圆中一个重要的结论,三种语言要相互转化,形成整体,才能运用自如.,CDAB,如图CD是直径,AM=BM,CDAB,垂径定理的推论,AB是O的一条弦,且AM=BM.,你能发现图中有哪些等量关系?与同伴说说你的想法和理由.,过点M作直径CD.,右图是轴对称图形吗?如果是,其对称轴是什么?,由CD是直径,AM=BM,平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.,垂径定理的推论,如图,在下列五个条件中:,只要具备其中两个条件,就可推出其余三个结论.,CD是直径,AM=BM,CDAB,例:如图,O的弦AB8,直径CEAB于D,DC2,求半径OC的长。,垂径,赵州石拱桥,1300多年前,我国隋朝建造的赵州石拱桥(如图)的桥拱是圆弧形,它的跨度(弧所对是弦的长)为37.4m,拱高(弧的中点到弦的距离,也叫弓形高)为7.2m,求桥拱的半径(精确到0.1m).,你是第一个告诉同学们解题方法和结果的吗?,赵州石拱桥,解:如图,用表示桥拱,所在圆的圆心为O,半径为Rm,经过圆心O作弦AB的垂线OD,D为垂足,与相交于点C.根据垂径定理,D是AB的中点,C是的中点,CD就是拱高.由题设,在RtOAD中,由勾股定理,得,解得R27.9(m).,答:赵州石拱桥的桥拱半径约为27.9m.,驶向胜利的彼岸,挑战自我填一填,1、判断:垂直于弦的直线平分这条弦,并且平分弦所对的两条弧.()平分弦所对的一条弧的直径一定平分这条弦所对的另一条弧.()经过弦的中点的直径

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论