

免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
解复系数方程应该注意的几个问题当系数不全为实数时,不可以用的正负来判断其是否有实数根,但求根公式仍然可以使用1注意能细致观察系数为实数还是复数例1:解方程错解:因为,则,则由复数相等条件得到且,这两式不可能同时成立,所以原方程无解剖析:上述解法是错误的,其原因是默认为实数正解:设,则,即则由复数相等的条件得到且,则解得,所以点评:对于上述复系数方程,一定要看清题意,这样才能正确解题练习:解方程答案:或2掌握根的判别式与系数之间的联系例2:已知关于的方程有实数根,求实数的取值范围错解:因为方程有实数根,则有,得到,则或剖析:上述解法将结论“实系数一元二次方程有实数”迁移到系数不全为实数的复系数一元二次方程上这种思路是错误的正解:方程有实数根,当时,将原方程整理,得到再由复数相等的条件得到,且解得,或,所以实数为或 点评:对于系数不全为实数的复系数一元二次方程,当时,方程不一定有两个相异的实数根练习:解关于x的方程答案:原方程的解为,3熟悉系数不全为实数的复系数例3:已知方程的两根分别为、,且,求实数的值错解:,而由韦达定理知道,所以,得到剖析:因为数系的扩充,绝对值的意义和性质已经发生了变化,当为虚数时,表示模,此时,因此当为虚数时,可见仍用实数范围内的结论解决复数问题,是容易犯错误的正解:(1)当,即时,则,而由韦达定理知道,所以,得到(2)当,即时,设方程的一根为时,则另一根为则由韦达定理有,则得到又,所以,所以,即的值是点评:在考虑上述问题时一定要细致
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年仿制药一致性评价对医药市场医药企业研发创新能力的影响报告
- 2025年地热能在北方地区供暖保障中的关键技术研究报告
- 2025年【二手车市场】行业报告:大数据分析助力二手车精准营销
- 施工监测周期研究报告
- 植物花材工艺品制作创新创业项目商业计划书
- 音乐课件制作培训
- 期末安稳办期末工作总结
- 2025年创新:新能源汽车充电设施智能化升级与用户体验研究报告
- 新能源协同创新机制研究报告2025:风力发电设备技术创新与应用分析报告
- gmp及附录培训课件
- GB/T 37507-2025项目、项目群和项目组合管理项目管理指南
- 2025年人教部编版小学三年级语文上册全册单元测试题及答案(全套)
- 城市轨道交通车站平面设计要点课件
- 生产计划与调度操作手册
- 食品防欺诈培训课件
- 室内墙体拆除合同全文
- 2025年中国移动初级解决方案经理学习考试题库大全-上(单选题)
- 江苏苏州历年中考语文现代文之散文阅读13篇(截至2024年)
- 体育行业反兴奋剂管理制度
- 护理管理的发展史
- 《以产地命名中药》课件
评论
0/150
提交评论