

免费预览已结束,剩余17页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
榆林市2019届高考模拟第一次测试数学(文科)试题第卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数,若,则分别为( )A. , B. , C. , D. ,【答案】A【解析】【分析】根据z1z2,得到3+2ia+bi,根据对应关系求出a,b的值即可【详解】由题意得:2+3i,故3+2ia+bi,故a3,b2,故选:A【点睛】本题考查了复数相等的概念,考查复数的运算,是一道常规题2.集合,则中元素的个数为( )A. 0 B. 1 C. 2 D. 3【答案】C【解析】【分析】化简集合B,根据交集的定义写出AB即可【详解】集合Ax|-2x2,Bx|x22x0)x|x0或x2,则AB0,2,其中元素的个数为2故选:C【点睛】本题考查了集合的化简与运算问题,是基础题3.函数y=xax|x|(a1)的图像的大致形状是( )A. B. C. D. 【答案】C【解析】由题意得,又由可得函数图象选B。4.若sin=13,且(0,2),则tan=( )A. 22 B. 32 C. 34 D. 24【答案】D【解析】【分析】利用同角基本关系式即可得到结果.【详解】sin=13,且(0,2),cos=223,tan=sincos=24故选:D【点睛】本题考查同角基本关系式,考查计算能力,属于基础题.5.已知向量a,b满足|a|=1,|b|=2,|a+b|=6,则|ab|=( )A. 2 B. 2 C. 3 D. 5【答案】A【解析】【分析】根据题意明确ab,进而求出|a-b|的值.【详解】根据题意得,(a-b)2=a2+b22ab又(a+b)2=a2+2ab+b21+4+2ab=62ab=1,(a-b)21+414,a-b=2故选:A【点睛】平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用. 利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决列出方程组求解未知数.6.一个正三棱柱的三视图如图所示,则正三棱柱的外接球的表面积是( )A. 763 B. 643 C. 383 D. 193【答案】A【解析】【分析】根据三视图还原该几何体,由于其外接球的球心是棱柱上下底面的中点连线的中点Q,求出Q到棱柱顶点的距离即可求出球的半径,再由球的表面积公式求出球的表面积即可得出结论【详解】由题意可得正三棱柱的示意图如图,它的高是2,底面是边长为4的正三角形,其中上下底面的中点连线的中点O即几何体外接球的球心,线段OC即半径由几何体的性质知,O是三角形的中心,可求得OO1,又OC=(23324)2+12=193,所以球的表面积为4193=763故选:A【点睛】解决与球有关的内切或外接的问题时,解题的关键是确定球心的位置对于外切的问题要注意球心到各个面的距离相等且都为球半径;对于球的内接几何体的问题,注意球心到各个顶点的距离相等,解题时要构造出由球心到截面圆的垂线段、小圆的半径和球半径组成的直角三角形,利用勾股定理求得球的半径 7.已知若命题p:|x1|1,命题q:1x1,则非p是非q的( )A. 充分必要条件 B. 必要不充分条件C. 充分不必要条件 D. 既不充分也不必要条件【答案】C【解析】【分析】先分别求出使p,q为真命题的x的范围,将p是q的何种条件转化为q是p何种条件【详解】p:|x1|11x11, 0x2,q:1x1,0x1显然q是p的充分不必要条件,根据一个命题和它的逆否命题真假性相同,p是q的充分而不必要条件故选:C【点睛】本题考查充要条件的判断,本题关键是正确的解不等式及理解一个命题和它的逆否命题真假性相同8.九章算术是我国古代数学文化的优秀遗产,数学家刘徽在注解九章算术时,发现当圆内接正多边行的边数无限增加时,多边形的面积可无限逼近圆的面积,为此他创立了割圆术,利用割圆术,刘徽得到了圆周率精确到小数点后四位3.1416,后人称3.14为徽率,如图是利用刘徽的割圆术设计的程序框图,若结束程序时,则输出的n为( )(31.732,sin1500.258,sin7.500.131)A. 6 B. 12 C. 24 D. 48【答案】C【解析】【分析】列出循环过程中s与n的数值,满足判断框的条件即可结束循环【详解】模拟执行程序,可得:n3,S=123sin120=334,不满足条件S3,执行循环体,n6,S=126sin60=332,不满足条件S3,执行循环体,n12,S=1212sin303,不满足条件S3,执行循环体,n24,S=1224sin15120.25883.1056,满足条件S3,退出循环,输出n的值为24故选:C【点睛】本题考查循环框图的应用,考查了计算能力,注意判断框的条件的应用,属于基础题9.等差数列an的前n项和Sn ,已知a1=13,S3=S11,当Sn最大时,n的值为( )A. 5 B. 6 C. 7 D. 8【答案】C【解析】【分析】由等差数列的性质可得a7+a80,可得该数列的前7项均为正数,从第8项开始全为负数,故数列的前7项和最大,进而可得答案【详解】S3S11,S11S3a4+a5+a6+a110,故可得(a4+a11)+(a5+a10)+(a7+a8)4(a7+a8)0,a7+a80,结合a113可知,该数列的前7项均为正数,从第8项开始全为负数,故数列的前7项和最大,故选:C【点睛】本题考查等差数列的前n项和,涉及等差数列的性质,从数列自身的特点入手是解决问题的关键,属中档题10.已知a=(cos2,sin),b=(1,2sin1),(2,),若ab=25,则tan(+4)=( )A. 13 B. 17 C. 27 D. 23【答案】B【解析】【分析】由ab=25得到sin=35,结合同角基本关系式及二倍角正切公式得到结果.【详解】a=(cos2,sin),b=(1,2sin-1),(2,),且ab=25,cos2+sin2sin-1=25,即cos2+2sin2-sin=25,cos2+1-cos2-sin=25,sin=35,cos=-45,即tan=-34tan+4=1+tan1-tan= 17故选:B【点睛】本题考查三角函数的化简求值问题,涉及的知识点是数量积的坐标运算,二倍角公式,同角基本关系式,考查恒等变换能力.11.已知函数f(x)是定义在R上的奇函数,当x0时,f(x)=2|x1|1,02,则函数g(x)xf(x)1在6,+)上的所有零点之和为A. 7 B. 8 C. 9 D. 10【答案】B【解析】试题分析:函数f(x)是定义在R上的奇函数,f(-x)=-f(x)又函数g(x)=xf(x)-1,g(-x)=(-x)f(-x)-1=(-x)-f(x)-1=xf(x)-1=g(x),函数g(x)是偶函数,函数g(x)的零点都是以相反数的形式成对出现的函数g(x)在-6,6上所有的零点的和为0,函数g(x)在-6,+)上所有的零点的和,即函数g(x)在(6,+)上所有的零点之和由0x2时,f(x)=2|x-1|-1,即f(x)=2x,0x12x2,1x2,函数f(x)在(0,2上的值域为12,1,当且仅当x=2时,f(x)=1,又当x2时,f(x)=12f(x-2),函数f(x)在(2,4上的值域为14,12,函数f(x)在(4,6上的值域为18,14,函数f(x)在(6,8上的值域为116,18,当且仅当x=8时,f(x)=18,函数f(x)在(8,10上的值域为132,116,当且仅当x=10时,f(x)=116,故f(x)1x在(8,10上恒成立,g(x)=xf(x)-1在(8,10上无零点,同理g(x)=xf(x)-1在(10,12上无零点,依此类推,函数g(x)在(8,+)无零点,综上函数g(x)=xf(x)-1在-6,+)上的所有零点之和为8,故选B考点:本题考查了函数的零点及性质点评:此类问题综合了函数的奇偶性,函数的零点,函数的图象和性质,难度较大,故可以用归纳猜想的方法进行处理12.已知点P是椭圆x2a2+y2b2=1(ab0,xy0)上的动点,F1(c,0)、F2(c,0)为椭圆的左、右焦点,O为坐标原点,若M是F1pF2的角平分线上的一点,且F1MMP,则|OM|的取值范围是( )A. (0,c) B. (0,a) C. (b,a) D. (c,a)【答案】A【解析】解:如图,延长PF2,F1M,交与N点,PM是F1PF2平分线,且F1MMP,|PN|=|PF1|,M为F1F2中点,连接OM,O为F1F2中点,M为F1F2中点|OM|=|F2N|=|PN|PF2|=|PF1|PF2|在椭圆中,设P点坐标为(x0,y0)则|PF1|=a+ex0,|PF2|=aex0,|PF1|PF2|=|a+ex0+aex0|=|2ex0|=|x0|P点在椭圆上,|x0|(0,a,又当|x0|=a时,F1MMP不成立,|x0|(0,a)|OM|(0,c)故选A第卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知抛物线的方程x=136y2,则该抛物线的准线方程是_【答案】x=9【解析】【分析】利用抛物线的标准方程,求出p,可求抛物线的准线方程【详解】x=136y2,焦点在x轴上,且p2=9,抛物线的准线方程是x9,故答案为:x9【点睛】本小题主要考查抛物线的标准方程、抛物线的简单性质等基础知识,考查运算求解能力,考查数形结合思想属于基础题14.已知正数x,y满足x2+y2=1,则1x+1y的最小值为_【答案】22【解析】【分析】令z=1x+1y0,由基本不等式可得z24+2xy,再由基本不等式可得1xy2,可得z22,取等号的条件一致,故可得【详解】正数x,y满足x2+y21,令z=1x+1y0,可得z2=1x2+1y2+2xy=x2+y2x2+x2+y2y2+2xy2+y2x2+x2y2+2xy2+2x2y2y2x2+2xy=4+2xy,当且仅当y2x2=x2y2即xy时取等号,而由题意可得1x2+y22xy可得1xy2,当且仅当xy时取等号,z24+48,z22,当且仅当xy时取等号,1x+1y的最小值为22,故答案为:22【点睛】本题考查基本不等式求最值,两次利用基本不等式是解决问题的关键,属中档题15.已知正项数列xn满足xn+2=xn+1xn,n=1,2,3,,若x1=1,x2=2,则x2019=_【答案】2【解析】【分析】根据题意,由数列的递推公式求出数列的前8项,分析可得数列xn的周期为6,据此可得x2019x3+3366x3,即可得答案【详解】根据题意,数列xn满足xn+2=xn+1xn,若x11,x22,则x3=x2x1=21=2,x4=x3x2=22=1,x5=x4x3=12,x6=x5x4=12,x7=x6x5=1,x8=x7x6=2,则数列xn的周期为6,x2019x3+3366x32;故答案为:2【点睛】本题考查数列的递推公式的应用,涉及归纳推理的应用,关键是分析数列各项变化的规律16.我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点A(2,3)且法向量为n=(4,1)的直线(点法式)方程为4(x+2)+(1)(y3)=0,化简得4xy+11=0,类比以上方法,在空间直角坐标系中,经过点B(2,3,4)且法向量为m=(1,2,1)的平面(点法式)方程为_【答案】x+2yz4=0【解析】【分析】类比根据直线的法向量求直线方程的方法,利用空间向量的数量积,求出经过点B(2,3,4)且法向量为m=(-1,-2,1)的平面方程【详解】类比直线方程求法,利用空间向量的数量积可得(1)(x-2)+(2)(y3)+1(z4)0,化简得x+2y-z-4=0故答案为:x+2y-z-4=0.【点睛】本题考查了类比推理的应用问题,也考查了空间向量的数量积的应用问题,是基础题目三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.西北某省会城市计划新修一座城市运动公园,设计平面如图所示:其为五边形ABCDE,其中三角形区域ABE为球类活动场所;四边形BCDE为文艺活动场所,AB,BC,CD,DE,EA,为运动小道(不考虑宽度)BCD=CDE=1200,BAE=600,DE=2BC=2CD=6千米.(1)求小道BE的长度;(2)求球类活动场所ABE的面积最大值.【答案】(1)37(2)6334【解析】【分析】(1)连接BD,在BCD中由余弦定理得BD的值,在RtBDE中,求解BE即可;(2)设ABE,在ABE中,由正弦定理求解AB,AE,表示SABE,然后求解最大值【详解】如解图所示,连接BD,(1)在三角形BCD中,BC=CD=DE2=3千米,BCD=1200,由余弦定理得:BD2=BC2+CD2-2BCCDcosBCD=27,所以BD=33BC=CD,BCD=1200,CDB=CBD=300CDE=1200,BDE=CDE-CDB=1200-300=900在RtBDE中,BE=BD2+DE2=(33)2+62=37(千米)小道BE的长度为37千米;(2)如图所示,设ABE=,BAE=600,AEB=1800-BAE-=1800-600-=1200-在三角形ABE中,由正弦定理可得:ABsinAEB=AEsinABE=BEsinBAE=3732=221,AB=221sin(1200-),AE=221sin,SABE=12ABAEsin600=1222122132sin(1200-)sin,=213-12cos(1200-+)-cos(1200-),=2132cos(1200-2)+2134,001200,-12002-12000,且直线与曲线C有两个交点,由根与系数关系的x1+x2=-50mk16+25k2,x1x2=25(m2-16)16+25k2,MN=1+k2(x1+x2)2-4x1x2=1+k24025k2+16-m225k2+16因为O到直线的距离d=m1+k2,SOMN=10,SOMN=12MNd=20m|25k2+16-m2|25k2+16=10令25k2+16=t,即有mt-m2t=12,可推出t2-4m2t+4m4=0,得t=2m2即25k2+16=2m2,此时x12+x22=(x1+x2)2-2x1x2=25(16+25k2-m2)m2=25y12+y22=16(1-x1225)+16(1-x2225)=16-16(x1225+x2225)+16=16,综上所述,x12+x22=25,y12+y22=16【点睛】求定值问题常见的方法从特殊入手,求出定值,再证明这个值与变量无关直接推理、计算,并在计算推理的过程中消去变量,从而得到定值21.已知函数f(x)=x2x.(1)设g(x)=lnxf(x)f(x),求g(x)的最大值及相应的x值;(2)对任意正数x恒有f(x)+f(1x)(x+1x)lnm,求m的取值范围.【答案】(1)当x=1时,g(x)取得最大值g(1)=0;(2)00当0x0;当x=1时,g(x)=0;当x1时,g(x)0,所以x+1x2(当且仅当x=1取等号)设x+1x=s(s2),则把式可化为s2-2-sslnm,即lnms-2s-1(对s2恒成立)令h(s)=s-2s-1,此函数在2,+)上是增函数,所以h(s)=s-2s-1的最小值为h(2)=0于是lnm0,即0m1.【点睛】本题考查了导数的综合应用及恒成立问题化为最值问题的方法,同时考查了换元法的应用,属于中档题请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.在直角坐标系中,以原点为极点,x轴正半轴为极轴建立极坐标系,直线的参数方程为x=2+ty=2t2(为参数),圆C的极坐标方程为=2(sincos).(1)写出直线的方程和圆C的直角坐标方程;(2)若点P为圆C上一动点,求点P到直线的最小距离.【答案】(1)直线的方程为2xy6=0;圆C的直角坐标方程为(x+1)2+(y1)2=2;(2)9552【解析】【分析】(1)直线的参数方程消去参数,能求出直线的直角坐标方程;圆C的极坐标方程化为22sin2cos,由此能求出圆C的直角坐标方程(2)设P(1+2cos,1+2sin)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 互斥锁与任务调度策略-洞察及研究
- 人造肉产品标准制定-洞察及研究
- 乡旅多元共治-洞察及研究
- 热泵技术在家电应用-洞察及研究
- 公司管理的工作总结(15篇)
- 【《我国旅游行业发展现状与中国中免公司经营概况分析》4100字】
- 【《基于核心素养发展的小学低学段朗读教学现状及策略研究》7800字(论文)】
- 量子信息论-第1篇-洞察及研究
- 云原生网络零信任架构的动态权限管理优化-洞察及研究
- 员工工资调整与公司经济效益合同
- YY/T 1686-2024采用机器人技术的医用电气设备术语、定义、分类
- 职业素养 课件 专题七 主动 给自己创造机会
- 住宅小区保洁服务合同范本
- 《护士输血流程》课件
- 小学英语“have”和“has”的用法(附练习题)
- 《股骨干骨折骨折》课件
- 生产车间5S样板蓝图规划
- 一年级行为好习惯养成教育课件
- 干式气柜检修施工方案
- 佳能-EOSM-相机说明书
- 2024年食品生产企业食品安全管理人员监督抽查考试题库(含答案)
评论
0/150
提交评论