甘肃天水第一中学高二数学第二次学段期中理_第1页
甘肃天水第一中学高二数学第二次学段期中理_第2页
免费预览已结束,剩余16页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省天水市第一中学2019-2020学年高二数学上学期第二次学段期中试题 理(含解析)一、选择题1.在等比数列中,则等于()A. B. C. D. 【答案】C【解析】【分析】直接利用等比数列公式计算得到答案.【详解】故选C【点睛】本题考查了等比数列的计算,属于简单题.2.若,则下列不等式中一定成立的是( )A. B. C. D. 【答案】C【解析】【分析】结合不等式,指数函数以及对数函数的性质判断即可得出答案.【详解】对A,当时,故A错误;对B,当时,则,故B错误;对C,因为在上是增函数,所以,故C正确;对D,当时,故D错误;故选C.【点睛】本题主要考查了不等式的性质,判断不等式的恒成立问题,可以通过举反例,从而得到不等式成立或不成立.3.已知实数满足,则的取值范围是( )A. B. C. D. 【答案】D【解析】【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,结合数形结合即可得到结论【详解】由线性约束条件作出可行域,如下图三角形阴影部分区域(含边界),令,直线:,平移直线,当过点时取得最大值,当过点时取得最小值,所以的取值范围是. 【点睛】本题主要考查线性规划的应用本题先正确的作出不等式组表示的平面区域,再结合目标函数的几何意义进行解答是解决本题的关键4.已知椭圆分别过点和,则该椭圆的焦距为( )A. B. C. D. 【答案】B【解析】【分析】由题意可得a24,b21,利用隐含条件求得c,则2c即为所求【详解】由题意可得,所以a24,b21,所以,从而.故选B【点睛】本题考查椭圆方程的求法,解题时要注意椭圆的简单性质的合理运用,是基础题5.九章算术是人类科学史上应用数学的最早巅峰,书中有这样一道题:“今有大夫、不更、簪褭、上造、公士,凡五人,共猎得五鹿欲以爵次分之,问各得几何?”其译文是“现有从高到低依次为大夫、不更、簪褭、上造、公士的五个不同爵次的官员,共猎得五只鹿,要按爵次高低分配(即根据爵次高低分配得到的猎物数依次成等差数列),问各得多少鹿?”已知上造分得 只鹿,则大夫所得鹿数为( )A. 只B. 只C. 只D. 只【答案】B【解析】【分析】将爵次从高到低分配的猎物数设为等差数列,可知,从而求得等差数列的公差,根据等差数列通项公式可求得首项,即为所求结果.【详解】设爵次高低分配得到的猎物数依次成等差数列,则又 ,即大夫所得鹿数为只本题正确选项:【点睛】本题考查等差数列基本量的计算,涉及到等差数列性质和通项公式的应用,属于基础题.6.“”是“”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件【答案】B【解析】【分析】解方程,得出的值,然后根据集合的包含关系可判断出“”是“”的必要非充分条件关系.【详解】解方程,得,因此,“”是“”的必要非充分条件.故选B.【点睛】本题考查必要不充分条件的判断,一般转化为两集合的包含关系来进行判断,也可以根据两条件的逻辑性关系进行判断,考查推理能力,属于基础题.7.已知向量,且,若实数x,y均为正数,则最小值是( )A. 10B. 13C. 16D. 19【答案】C【解析】【分析】根据两个向量共线可得,再将化为后,用基本不等式可求得.【详解】因为,所以,所以,因为,所以,当且仅当时等号成立.故选.【点睛】本题考查了向量共线的坐标表示以及基本不等式求最小值.属于中档题.解题关键是这一步的变形.8.若双曲线E:的左、右焦点分别为,点是双曲线上的一点,且则( )A. 8B. 6C. 4D. 2【答案】B【解析】【分析】求得双曲线的,由双曲线的定义可得,代入已知条件解方程即可得到所求值【详解】解:双曲线E:可得,由双曲线的定义可得,由,可得,解得(2舍去)故选B【点睛】本题考查双曲线的定义和方程,考查定义法的运用,以及运算能力,属于基础题9.为坐标原点,为抛物线的焦点,为上一点,若,则的面积为A. B. C. D. 【答案】B【解析】【分析】由抛物线的标准方程可得抛物线的焦点坐标和准线方程,设出,由PF=4以及抛物线的定义列式可得,即,再代入抛物线方程可得点P的纵坐标,再由三角形的面积公式可得.【详解】由可得抛物线的焦点F(1,0),准线方程为,如图:过点P作准线 的垂线,垂足为,根据抛物线的定义可知PM=PF=4,设,则,解得,将 代入可得,所以的面积为=.故选B.【点睛】本题考查了抛物线几何性质,定义以及三角形的面积公式,关键是利用抛物线的定义求P点的坐标;利用OF为三角形的底,点P的纵坐标的绝对值为高计算三角形的面积.属中档题.10.如图,平行六面体中,与交于点,设,则 ( )A. B. C. D. 【答案】D【解析】【分析】由于,代入化简即可得出【详解】,故选D【点睛】本题考查了向量三角形法则、平行四边形法则、平行六面体的性质,考查了推理能力与计算能力,属于中档题11.在四棱锥中,底面ABCD,底面ABCD为正方形,则异面直线PA与BD所成角余弦值为( )A. B. C. D. 【答案】D【解析】【分析】由题意建立空间直角坐标系,求出的坐标,由两向量所成角的余弦值求解【详解】解:由题意,建立如图的空间坐标系,底面正方形,底面,点, , , 则,异面直线与所成角的余弦值为故选:【点睛】本题考查利用空间向量求解空间角,考查计算能力,是中档题12.若椭圆:的上顶点与右顶点的连线垂直于下顶点与右焦点连线,则椭圆的离心率为()A. B. C. D. 【答案】C【解析】【分析】根据椭圆上下顶点的坐标、焦点坐标求得直线的斜率,利用斜率乘积为列方程,结合求得离心率的值.【详解】椭圆上顶点坐标为,右顶点的坐标为,故直线的斜率为.椭圆下顶点坐标为,右焦点的坐标为,故直线的斜率为.由于,故,即,由于,所以,即,解得.故选C.【点睛】本小题主要考查椭圆离心率的求法,考查椭圆的几何性质,考查两直线两直线垂直的表示,考查化归与转化的数学思想方法,属于基础题.二、填空题13.命题“,“的否定为_【答案】,【解析】【分析】命题“,”,是一个全称命题,其否定命题一定是一个特称命题,由全称命题的否定方法,我们易得到答案【详解】命题“,”,命题“,”的否定为:,故答案为,【点睛】对命题“,”的否定是:“,”;对命题“,”的否定是:“,”,即对特称命题的否定是一个全称命题,对一个全称命题的否定是特称命题14.已知双曲线的一条渐近线为,那么双曲线的离心率为_【答案】2【解析】【分析】根据渐近线方程求得的值,根据离心率的公式求得双曲线的离心率.【详解】由于双曲线的一条渐近线为,故.所以双曲线离心率.【点睛】本小题主要考查双曲线的渐近线,考查双曲线离心率的求法,属于基础题.15.已知命题“p或q”是假命题,有下列结论:命题“p且q”是真命题;命题“p且q”是假命题;命题“p或q”是真命题;命题“p或q”是假命题其中正确的是_(只填序号)【答案】【解析】【分析】由“p或q”是假命题,知p与q均为假,故p,q均为真再判断每一个命题得解.【详解】由“p或q”是假命题,知p与q均为假,故p,q均为真故答案为【点睛】(1)本题主要考查复合命题的真假,意在考查学生对该知识的掌握水平和分析推理能力.(2) 、复合命题真假判定的口诀:真“非”假,假“非”真,一真“或”为真,两真“且”才真.16.已知抛物线,过其焦点且斜率为1的直线交抛物线于、两点,若线段的中点的纵坐标为2,则该抛物线的准线方程为 【答案】【解析】试题分析:由,准线考点:抛物线方程及性质三、解答题17.已知数列满足,且.(I)证明:数列是等差数列;(II)求数列的前项和.【答案】(I)见解析(II)【解析】【分析】(I)根据题意,对于,变形可得,根据等差数列的定义分析可得结论;(II)由(1)中的结论,结合等差数列的通项公式可得,即可得出,再根据错位相减法即可求解出结果【详解】解:(I)由,可得所以得为等差数列,公差为1;(II),-得【点睛】本题主要考查了构利用定义法证明等差数列以及错位相减法求数列的前项和,证明时采用了构造的方法,错位相减法主要用于数列的形式为等差乘等比18.如图,在四棱锥中,底面ABCD是正方形,侧面底面ABCD,且,设E,F分别为PC,BD的中点(1)求证:平面PAD;(2)求直线EF与平面PBD所成角的正弦值【答案】(1)见解析;(2)【解析】【分析】(1)利用线面平行的判定定理:连接,只需证明,利用中位线定理即可得证;(2)取的中点,连接,建立如图所示的空间直角坐标系,利用向量法求出直线与平面所成角的正弦值.【详解】解:(1)证明:为平行四边形,连结,为中点,为中点,在中,且平面,平面,平面;(2)取的中点,连接,且为的中点,又侧面底面,底面;建立如图所示的空间直角坐标系,令正方形的边长,则,设面的法向量为,令则,设直线与平面所成角为,则故直线与平面所成角的正弦值为.【点睛】本题考查线面平行,线面角的求解,考查学生的推理论证能力及逻辑思维能力,属中档题19.如图,直三棱柱中,且,D,E分别为,的中点,若,(1)证明:平面;(2)求锐二面角的正切值【答案】(1)见解析;(2)【解析】【分析】建立如图所示的空间直角坐标系,求出,坐标(1)通过计算向量的数量积为0,证明,利用直线与平面垂直的判定定理证明平面(2)求出平面的一个法向量和平面的一个法向量,利用向量的数量积求解二面角的余弦值【详解】解:建立如图所示的空间直角坐标系, 则, , , , , 、分别为、的中点,(1)证明:由已知,得,又,即,又平面,平面,且平面 (2)由已知得,设平面的一个法向量为,则,令,则,易知平面的一个法向量为,则 故锐二面角的正切值为【点睛】本题考查向量在立体几何中的应用,二面角的平面角的求法,直线与直线的垂直,直线与平面的垂直数量积为0的应用考查空间想象能力以及计算能力20.已知椭圆C:()过点,短轴一个端点到右焦点的距离为2(1)求椭圆C的方程;(2)设过定点的直线1与椭圆交于不同的两点A,B,若坐标原点O在以线段AB为直径的圆上,求直线l的斜率k【答案】(1);(2)或【解析】【分析】(1)通过短轴的一个端点到右焦点的距离为2可知,且椭圆过点,得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论