




已阅读5页,还剩46页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
mechanicalwave,第六章机械波,波动振动在空间的传播过程.,波动是自然界常见的、重要的物质运动形式,此页备注,教学基本要求第六章机械波,一掌握描述简谐波的各物理量及各量间的关系;,二理解机械波产生的条件.掌握由已知质点的简谐运动方程得出平面简谐波的波函数的方法.理解波函数的物理意义.,三了解惠更斯原理和波的叠加原理.理解波的相干条件,能应用相位差和波程差分析、确定相干波叠加后振幅加强和减弱的条件;,四理解驻波及其形成,了解驻波和行波的区别;,6-1机械波的形成波长周期和波速,振动在空间的传播过程叫做波动,机械波,电磁波,波动,机械振动在弹性介质中的传播.,交变电磁场在空间的传播.,一、机械波的形成,()机械波实质上是介质中大量质元参与的集体振动,()机械波产生的条件是:,1)波源;2)弹性介质,当弹性介质中的一部分发生振动时,由于介质各个部分之间的弹性力间的相互作用,振动就由近及远的传播出去,横波:质点振动方向与波的传播方向相垂直的波.,(仅在固体中传播),特征:具有交替出现的波峰和波谷.,二、横波与纵波,纵波:质点振动方向与波的传播方向互相平行的波.,(可在固体、液体和气体中传播),特征:具有交替出现的密部和疏部.,三、描述波动的物理量,沿波的传播方向,两个相邻的、相位差为的振动质点之间的距离,即一个完整波形的长度.,波前进一个波长的距离所需要的时间.用T表示。,1.波长:,2.周期:,周期的倒数,即单位时间内波动所传播的完整波的数目.,波动过程中,某一振动状态(即振动相位)单位时间内所传播的距离.,*周期或频率只决定于波源的振动。,3.频率f,4.波速,由于波源作一次完全振动,波就前进一个波长的距离,所以,(1)波的周期和频率与媒质的性质无关;一般情况下,与波源振动的周期和频率相同。,a.拉紧的绳子或弦线中横波的波速为:,b.均匀细棒中,纵波的波速为:,(2)波速实质上是相位传播的速度,故称为相速度;其大小主要决定于媒质的性质,与波的频率无关。,说明,张力,线密度,例如:,四、波线波面波前,1、波线:沿波传播的方向画一些带箭头的线叫波线。,2、波面:波源在某一时刻的振动相位同时到达的各点所组成的面,称为波面,又称为同相面。,波面有许多个,最前面的那个波面称为波前。,平面波球面波在各向同性均匀介质中,波线与波面垂直.,6-2平面简谐波的波函数,平面简谐波:波面为平面的简谐波,简谐波:(harmonicwaves)介质传播的是谐振动,且波所到之处,介质中各质点作同频率的谐振动。,一、平面简谐波的波函数(波动方程),各质点相对平衡位置的位移,波线上各质点平衡位置,介质中任一质点(坐标为x)相对其平衡位置的位移(坐标为y)随时间的变化关系,即y(x,t)称为波函数.,设波源O的振动方程为,t时刻点P的运动,时刻点O的运动,时间推迟方法,P点在t时刻的位移为,从相位看,P处质点振动相位较O点质点相位落后,由于P点是任意选取的,所以上式描述了在波的传播方向上,介质中任一点(距离原点为x)在任一时刻t的位移,这就是x方向传播的平面简谐波的波函数,也叫平面简谐波的波动方程。,波函数的其它形式,讨论:,1.沿x轴负向传播的平面简谐波波函数,P点比O点超前的相位,P点的振动状态在时间上超前O点,波函数,P点t时刻的位移,O点t+x/u时刻的位移,2.如图简谐波以余弦函数表示,求O、a、b、c各点振动初相位.,二、波函数的物理意义:,(1)对于给定的位置坐标(x=x0),波动方程表示该处质点的振动方程。,(2)对于给定时刻(t=t0),波动方程表示该时刻波线上各质点分布情况,即为该时刻的波形方程。,(3)若x和t都是变量,波动方程表示波线上不同质点、不同时刻的位移。即波形的传播,*若波以速度u沿x轴负方向传播,则波动方程为,波形以速度u向前传播。,例1一平面简谐纵波沿着线圈弹簧传播,设波沿x轴正向传播,弹簧中某圈的最大位移为3.0cm,振动频率为25Hz,弹簧中相邻两疏部中心的距离为24cm。当t=0时,在x=0处质元的位移为零并向轴正向运动。试写出该波的波动方程。,解:,x=0处质元的振动方程为:,波动方程为:,例题2如图,实线为一平面余弦横波在t=0时刻的波形图,此波形以u=0.08m/s的速度沿X轴正向传播,试求:(1)a、b两点的振动方向;(2)O点的振动方程;(3)波动方程。,解:,O点的振动方程为,波动方程为,.,20,本次作业:,5-27、6-10、6-13,下次上课内容:,6-36-5,第十次作业答案,5-7(1)设所求方程为,(2),P点相位为0,,5-10,相位差:,5-16,设该物体的振动方程为,已知:,得:,振动方程,(1),(2)由旋转矢量得:,6-2平面简谐波的波函数,平面简谐波:波面为平面的简谐波,简谐波:(harmonicwaves)介质传播的是谐振动,且波所到之处,介质中各质点作同频率的谐振动。,一、平面简谐波的波函数(波动方程),各质点相对平衡位置的位移,波线上各质点平衡位置,介质中任一质点(坐标为x)相对其平衡位置的位移(坐标为y)随时间的变化关系,即y(x,t)称为波函数.,设波源O的振动方程为,t时刻点P的运动,时刻点O的运动,时间推迟方法,P点在t时刻的位移为,从相位看,P处质点振动相位较O点质点相位落后,由于P点是任意选取的,所以上式描述了在波的传播方向上,介质中任一点(距离原点为x)在任一时刻t的位移,这就是x方向传播的平面简谐波的波函数,也叫平面简谐波的波动方程。,波函数的其它形式,讨论:,1.沿x轴负向传播的平面简谐波波函数,P点比O点超前的相位,P点的振动状态在时间上超前O点,波函数,P点t时刻的位移,O点t+x/u时刻的位移,2.如图简谐波以余弦函数表示,求O、a、b、c各点振动初相位.,二、波函数的物理意义:,(1)对于给定的位置坐标(x=x0),波动方程表示该处质点的振动方程。,(2)对于给定时刻(t=t0),波动方程表示该时刻波线上各质点分布情况,即为该时刻的波形方程。,(3)若x和t都是变量,波动方程表示波线上不同质点、不同时刻的位移。即波形的传播,*若波以速度u沿x轴负方向传播,则波动方程为,波形以速度u向前传播。,例1一平面简谐纵波沿着线圈弹簧传播,设波沿x轴正向传播,弹簧中某圈的最大位移为3.0cm,振动频率为25Hz,弹簧中相邻两疏部中心的距离为24cm。当t=0时,在x=0处质元的位移为零并向轴正向运动。试写出该波的波动方程。,解:,x=0处质元的振动方程为:,波动方程为:,例题2如图,实线为一平面余弦横波在t=0时刻的波形图,此波形以u=0.08m/s的速度沿X轴正向传播,试求:(1)a、b两点的振动方向;(2)O点的振动方程;(3)波动方程。,解:,O点的振动方程为,波动方程为,6-3波的能量,一、波动能量的传播,当机械波在媒质中传播时,媒质中各质点均在其平衡位置附近振动,因而具有振动动能。,同时,介质发生弹性形变,因而具有弹性势能。,以棒中的纵波为例分析波动能量的传播,棒上取一质元,设波在截面积为S的细棒中沿x方向传播,简谐波函数为:,质元的动能为:,质元的势能为:,质元的总能量为:,体积元在平衡位置时,动能、势能和总机械能均最大。,体积元的位移最大时,三者均为零。,1)在波动传播的媒质中,任一体积元的动能、势能、总机械能均随x,t作周期性变化,且变化是同相位的。,讨论,2)任一体积元都在不断地接收和放出能量,即不断地传播能量。任一体积元的机械能不守恒。波动是能量传递的一种方式。,能量密度与平均能量密度,(1)单位体积内波的能量称为能量密度。,(2)能量密度在一个周期内的平均值为平均能量密度。,结论:机械波的能量与振幅的平方、频率的平方以及介质的密度成正比。,二、波的能流和能流密度,能流:单位时间内垂直通过某一面积的能量,能流也是周期性变化的,其在一个周期内的平均值称为平均能流。,能流密度,(波的强度),单位时间,通过垂直于波传播方向的单位面积的平均能流。,6-4惠更斯原理波的衍射,一、惠更斯原理,根据惠更斯原理,可用几何作图方法,确定下一时刻的波前。,介质中波动传播到的各点都可以看作是发射子波的波源,而在其后的任意时刻,这些子波的包络就是新的波前。,子波波源,波前,子波,波在传播过程中遇到障碍物时,能绕过障碍物的边缘,在障碍物的阴影区内继续传播。,二、波的衍射,一、波的叠加原理,几列波空间相遇后,仍然保持它们各自原有的特征(频率、波长、振幅、振动方向等)不变,并按照原来的方向继续前进,好象没有遇到过其它波一样。,在相遇区域内任一点的振动为各列波单独存在时在该点所引起的振动的合振动。,6-5波的干涉,频率相同、振动方向平行、相位相同或相位差恒定的两列波相遇时,使某些地方振动始终加强,而使另一些地方振动始终减弱的现象,称为波的干涉现象.,二、波的干涉条件和公式,1)频率相同,2)振动方向平行,3)相位相同或相位差恒定,波的相干条件,设两个角频率都是而且振动方向相同的波源S1、S2发出的两列相干波在介质中某点P相遇,P点与S1、S2的距离分别为r1和r2,波源振动,点P的两个分振动,P点的合振动为:,式中A和如下确定:,可以看出A是与时间无关的稳定值,其大小取决于该点处两分振动的相位差,讨论,1)合振动的振幅(波的强度)在空间各点的分布随位置而变,但是稳定的。,振动始终加强,振动始终减弱,2),若1=2则,3),振动始终加强,振动始终减弱,例如图所示,A、B两点为同一介质中两相干波源。其振幅皆为5cm,频率皆为100Hz,但当点A为波峰时,点B恰为波谷。设波速为10m/s,试写出由A、B发出的两列波传到点P时干涉的结果。,解:,设A的相位较B超前,点P振动减弱,合振幅为:,一、驻波的产生,6-6驻波,驻波是由振幅相同的两列同类相干波,在同一直线上沿相反方向传播时叠加而成,是一种特殊的干涉现象.,产生条件:1.相干波2.A,u相同3.方向相反,(1)有波形,却无波形传播(无相位,能量传播),(2)各质点在分段上振动,但振幅不等,(3)各分段上振动相位相同,相邻两分段的振动相位相反,驻波的特点:,二、驻波方程,设向右传播和向左传播的波的表达式分别为:,叠加后,介质中各处质点的合位移为:,不同点的振幅不同,振幅最大的点为波腹,振幅为零的点为波节。,1、驻波的振幅,波腹处的坐标满足条件:,波节处的坐标满足条件:,相邻波腹(节)间距,2、驻波的相位,相邻两波节之间质点振动同相位,任一波节两侧振动相位相反,在波节处产生的相位跃变。,波节,波腹,驻波实质上是一种特殊的振动!,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年人力资源管理师(一级)模拟考试试卷:人力资源战略规划与绩效管理策略实战案例应用解析含答案
- 钟表维修工数字化技能考核试卷及答案
- 2025年护士资格考试试题及答案8章
- 2025年度“三基”理论考试题有答案
- 农发行沈阳市新民市2025秋招笔试英语题专练及答案
- 农发行抚州市宜黄县2025秋招金融科技岗笔试题及答案
- 小学劳动命题试卷及答案
- 2025年燃气施工考试试题及答案
- 特种禽类饲养员技能巩固考核试卷及答案
- 横机工技术考核试卷及答案
- 葫芦种植技术
- 热敏电阻器配方设计与制备工艺详解
- 监理工程师题库检测试题打印含答案详解【完整版】
- 2025年江西省高考生物试卷真题(含标准答案及解析)
- 2025年辅警笔试题库行测及答案指导
- 运维7×24小时服务保障方案
- 单招临床医学试题及答案2025年版
- 2025年辽宁省中考语文真题卷含答案解析
- 2《归园田居》任务式公开课一等奖创新教案(表格式)统编版高中语文必修上册
- 银行文明礼仪课件
- 虚拟电厂运行关键课件
评论
0/150
提交评论