福建泉州部分一级达标中学高三上期末联考数学理科_第1页
福建泉州部分一级达标中学高三上期末联考数学理科_第2页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

泉州市部分一级达标中学2009届高三期末联考试卷数学(理科)一、选择题:(每题5分)1已知aR,设集合Ax|x1|2aa22,则A的子集个数共有( )A0个B1个C2个D无数个2若a、b、c为实数,则下列命题正确的是( )A若ab,则ac2bc2B若ab0,则a2abb2C若ab0,则 D若ab0,则3已知函数y=2sin(x+),(0)的对称中心为(n,0),(nZ);则=( )A 1 B 2 C D 4方程xy=lg|x|的曲线只能是 ()yx0AByx0Cyx0yx0D5已知函数的值域为R,则m的取值范围是( )ABCD 6 若,则点必在( )A直线的左下方B直线的右上方C直线的左下方D直线的右上方7已知实数a,b满足:(其中i是虚数单位),若用Sn表示数列的前n项的和,则Sn的最大值是 ( )(A)16 (B)15 (C)14 (D)128.抛物线y2=x与过焦点且与对称轴垂直的直线所围成图形的面积为( )A B C D 9下列命题中:函数的最小值是:在ABC中,若,则ABC是等腰或直角三角形;如果正实数,a,b,c满足a+bc,则;如果是可导函数,则是函数在x=x0处取到极值的必要不充分条件其中正确的命题是 ( )(A) (B) (C) (D)10.已知定义在R上的函数满足,且,. 则有穷数列( )的前项和大于的概率是 ( ) A B C D DADABCOOBACO122主视图侧(左)视图俯视图(第12题图)二、填空题:(除14题6分其余每题5分)11已知(cos,sin),(3cos,4sin),若,则cos212、如图所示是三棱锥D-ABC的三视图,其中DAC、DAB、BAC都是直角三角形,点O在三个视图中都是所在边的中点,则在三棱锥D-ABC中DO的长度为_;该三棱锥外接球的表面积为_.13. 在圆中有结论:如图,“AB是圆O的直经,直线AC,BD是圆O过A,B的切线,P是圆O上任意一点,CD是过P的切线,则有”。 类比到椭圆:“AB是椭圆的长轴,直线AC,BD是椭圆过A,B的切线,P是椭圆上任意一点,CD是过P的切线,则有 .”14. 选做题(只需在(1)(2)小题中任选一题;(3)小题为必做题)开始 是输入p结束输出否(1)(坐标系与参数方程选做题)圆的面积为 . (2)(坐标系与参数方程选做题)极坐标内曲线的中心与点的距离为 (3)(不等式选讲选做题) 若不等式无实数解,则的取值范围是. 15执行右边的程序框图,若,则输出的 。三、解答题:(共74分)16(本小题满分12分)已知函数f(x)asinxacosx(a0,0)的图象上两相邻最高点的坐标分别为(,2)和(,2)(1)求a与的值;(2)在ABC中,a、b、c分别是角A、B、C的对边,且f(A)2,求的值17(本小题满分12分)甲、乙、丙三人参加了一家公司招聘面试,甲表示只要面试合格就签约;乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约,设每人面试合格的概率都是,且面试是否合格互不影响。(1)求至少有一人面试合格的概率;(2)求签约人数的分布列和数学期望;18.(本小题题满分12分)如图:在四棱锥中,底面为正方形,与底面垂直,且,为棱上的点.(1)为底面对角线上的点,且 ,求证:平面;(2)当时,求二面角的余弦值.19(本小题满分12分)设动点到定点的距离比它到轴的距离大记点的轨迹为曲线(1)求点的轨迹方程;(2)设圆过,且圆心在的轨迹上,是圆在轴上截得的弦,当运动时弦长是否为定值?请说明理由20(本小题满分12分)设方程tan2x4tanx0在n1,n)(nN*)内的所有解之和为an(1)求a1、a2的值,并求数列an的通项公式;(2)设数列bn满足条件:b12,bn1a,求证:222(本小题满分14分)若函数f(x)ax3bx2cxd是奇函数,且f(x)极小值f()(1)求函数f(x)的解析式;(2)求函数f(x)在1,m(m1)上的最大值;(3)设函数g(x),若不等式g(x)g(2kx)(k)2在(0,2k)上恒成立,求实数k的取值范围2009届高三期末联考试卷参考答案一、选择题:BBCCD CCBDC二、填空题:11. 12. 13;14;;15三、解答题:16解(1)f(x)asinxacosx2asin(x)由已知知周期T, 故a1,2;6分(2)由f(A)2,即sin(2A)1,又2A, 则2A,解得A6008分故 212分17A、B、C分别表示事件甲、乙、丙面试合格,则(1)至少有一人合格的概率P=1P()= 4分(2)可能取值0,1,2,3 5分分布列为 0123 P 9分 12分18解:(1)连接,交于点,连接,CDBAEF则在正方形中,又,故在中,又平面,平面,所以,平面 (2)面,四边形为正方形,故以点为原点,为轴,为轴,建立如图所示的空间直角坐标系,则, 面,是面的一个法向量设是平面的一个法向量,则,且,取,得, 此时,向量和的夹角就等于二面角的平面角 二面角的余弦值为 19解:(1)依题意,到距离等于到直线的距离,曲线是以原点为顶点,为焦点的抛物线(2分) 曲线方程是(4分)(2)设圆心,因为圆过故设圆的方程(7分)令得:设圆与轴的两交点为,则 (10分)在抛物线上, (13分) 所以,当运动时,弦长为定值2 (14分)20方程tan2x4tanx(tanx1)(tanx)0得tanx或tanx(1)当n1时,x0,1),即x0,)由tanx,或tanx得x或x 故a1;2分当n2时,x1,2),则x,2)由tanx或tanx,得x或x 故a14分当xn1,n)时,x(n1),n)由tanx,或tanx得x(n1)或x(n1)得x(n1)或x(n1), 故an(n1)(n1)2n6分(2)由(1)得bn1a2bn8分即bn1a2(bn)22(bn1)2n(b1)2n1010分则,即12212分21解:(1)函数f(x)ax3bx2cxd是奇函数,则bd0,f /(x)3ax2c,则故f(x)x3x;4分Oxy11(2)f /(x)3x213(x)(x)f(x)在(,),(,)上是增函数,在,上是减函数,由f(x)0解得x1,x0,如图所示,当1m0时,f(x)maxf(1)0;当0m时,f(x)maxf(m)m3m,当m时,f(x)maxf()故f(x)max9分(3)g(x)(x),令y2kx,则x、yR,且2kxy2,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论