

已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题06 导数的几何意义 文考纲解读明方向考点内容解读要求常考题型预测热度1.导数的概念与几何意义1.了解导数概念的实际背景2.理解导数的几何意义选择题、填空题2.导数的运算1.能根据导数定义求函数y=C(C为常数),y=x,y=,y=x2,y=x3,y=的导数2.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数选择题、解答题本部分主要是对导数概念及其运算的考查,以导数的运算公式和运算法则为基础,以导数的几何意义为重点.1.导数的几何意义最常见的是求过曲线上某点的切线的斜率、方程、斜率与倾斜角的关系、切点的坐标,或以平行、垂直直线的斜率间的关系为载体求字母的取值等.2.导数的运算是每年必考的内容,一般不单独考查,而在考查导数的应用时与单调性、极值与最值结合出题考查.3.本节内容在高考中分值为5分左右,属于容易题.2018年高考全景展示1.【2018年新课标I卷文】设函数若为奇函数,则曲线在点处的切线方程为A. B. C. D. 【答案】D【解析】分析:利用奇函数偶此项系数为零求得,进而得到的解析式,再对求导得出切线的斜率,进而求得切线方程.点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果.2【2018年天津卷文】已知函数f(x)=exlnx,为f(x)的导函数,则的值为_【答案】e【解析】分析:首先求导函数,然后结合导函数的运算法则整理计算即可求得最终结果.详解:由函数的解析式可得:,则:.即的值为e.点睛:本题主要考查导数的运算法则,基本初等函数的导数公式等知识,意在考查学生的转化能力和计算求解能力.3【2018年全国卷II文】曲线在点处的切线方程为_【答案】y=2x2点睛:求曲线在某点处的切线方程的步骤:求出函数在该点处的导数值即为切线斜率;写出切线的点斜式方程;化简整理.4【2018年天津卷文】设函数,其中,且是公差为的等差数列.(I)若 求曲线在点处的切线方程;(II)若,求的极值;(III)若曲线 与直线 有三个互异的公共点,求d的取值范围.【答案】()x+y=0;()极大值为6;极小值为6;() 【解析】分析:()由题意可得f(x)=x3x,=3x21,结合f(0)=0,=1,可得切线方程为x+y=0.()由已知可得:f(x)=x33t2x2+(3t229)x t23+9t2.则= 3x26t2x+3t229.令=0,解得x= t2,或x= t2+.据此可得函数f(x)的极大值为f(t2)=6;函数极小值为f(t2+)=6.(III)原问题等价于关于x的方程(xt2+d) (xt2) (xt2d)+ (xt2)+ 6=0有三个互异的实数解,令u= xt2,可得u3+(1d2)u+6=0.设函数g(x)= x3+(1d2)x+6,则y=g(x)有三个零点.利用导函数研究g(x)的性质可得的取值范围是 详解:()由已知,可得f(x)=x(x1)(x+1)=x3x,故=3x21,因此f(0)=0,=1,又因为曲线y=f(x)在点(0,f(0)处的切线方程为yf(0)=(x0),故所求切线方程为x+y=0 ()由已知可得f(x)=(xt2+3)(xt2)(xt23)=(xt2)39(xt2)=x33t2x2+(3t229)xt23+9t2故=3x26t2x+3t229令=0,解得x=t2,或x=t2+当x变化时,f(x)的变化如下表:x(,t2)t2(t2,t2+)t2+(t2+,+)+00+f(x)极大值极小值所以函数f(x)的极大值为f(t2)=()39()=6;函数f(x)的极小值为f(t2+)=()39()=6若即,也就是,此时,且,从而由的单调性,可知函数在区间内各有一个零点,符合题意所以,的取值范围是点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出 ,本专题在高考中的命题方向及命题角度 从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系 (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数 (3)利用导数求函数的最值(极值),解决生活中的优化问题 (4)考查数形结合思想的应用5.【2018年文北京卷】设函数.()若曲线在点处的切线斜率为0,求a;()若在处取得极小值,求a的取值范围.【答案】() ()【解析】分析:(1)求导,构建等量关系,解方程可得参数的值;(2)对分及两种情况进行分类讨论,通过研究的变化情况可得取得极值的可能,进而可求参数的取值范围.详解:(1)当a=0时,令得x=1.随x的变化情况如下表:x1+0极大值在x=1处取得极大值,不合题意.(2)当a0时,令得.当,即a=1时,在上单调递增,无极值,不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 汉字演变过程
- 贵州省部分学校2025届高三上学期9月月考历史试卷(含答案)
- 广东省广州市天河区2024-2025学年下学期期末考试七年级道德与法治试卷
- 【资源】大学体育在线视频系列课程(山东联盟)知到智慧树答案
- 幸福心得体会15篇
- 网络直播行业市场调研报告
- 2024年秋新北师大版数学一年级上册课件 总复习 第3课时 统计与概率
- 2024年秋新北师大版数学一年级上册教学课件 第四单元 10以内数加与减 第5课时 小鸡吃食
- 永动机课件教学课件
- 智算中心硬件设备选型方案
- 福建省福州市联盟校2023-2024学年高一下学期期末考试英语试题(解析版)
- 2024-2025学年重庆市万州区八年级(下)期末语文试卷
- 2025年乒乓球二级裁判考试题及答案
- 2025年江苏省苏豪控股集团有限公司校园招聘笔试备考试题及答案详解(必刷)
- (完整)中小学“学宪法、讲宪法”知识竞赛题库及答案
- 2025年行政执法人员执法证考试必考多选题库及答案(共300题)
- 《工程勘察设计收费标准》(2002年修订本)
- 2024年自投光伏安装合同范本
- DB11T 1581-2018 生产经营单位应急能力评估规范
- 汶川地震波时程记录(卧龙3向)
- 吴迪完胜股市学习笔记
评论
0/150
提交评论