北京师范大学附中高一数学下学期期末考试国际班含解析_第1页
北京师范大学附中高一数学下学期期末考试国际班含解析_第2页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市师范大学附中2018-2019学年高一数学下学期期末考试试题(国际班,含解析)一、选择题:在每小题列出的四个选项中,选出符合题目要求的一项,请将答案填在答题纸上。1.一个圆柱的母线长为5,底面半径为2,则圆柱的轴截面的面积是( )A. 10B. 20C. 30D. 40【答案】B【解析】分析:要求圆柱的轴截面的面积,需先知道圆柱的轴截面是什么图形,圆柱的轴截面是矩形,由题意知该矩形的长、宽分别为,根据矩形面积公式可得结果.详解:因为圆柱的轴截面是矩形,由题意知该矩形的长是母线长,宽为底面圆的直径,所以轴截面的面积为,故选B.点睛:本题主要考查圆柱的性质以及圆柱轴截面的面积,属于简单题.2.经过平面外两点,作与平行的平面,则这样的平面可以作 ()A. 1个或2个B. 0个或1个C. 1个D. 0个【答案】B【解析】若平面外的两点所确定的直线与平面平行,则过该直线与平面平行的平面有且只有一个;若平面外的两点所确定的直线与平面相交,则过该直线的平面与平面平行的平面不存在;故选B.3. 棱长都是1的三棱锥的表面积为( )A. B. C. D. 【答案】A【解析】三棱锥的表面积为四个边长为1的等边三角形的面积和,故。选A。4.已知直线平面,直线平面,下列四个命题中正确的是( )() () () ()A. ()与()B. ()与()C. ()与()D. ()与()【答案】D【解析】直线l平面,若,则直线l平面,又直线m平面,lm,即(1)正确;直线l平面,若,则l与m可能平行、异面也可能相交,故(2)错误;直线l平面,若lm,则m平面,直线m平面,;故(3)正确;直线l平面,若lm,则m或m,则与平行或相交,故(4)错误;故选D.5.若平面平面,直线平面,则直线与平面的关系为( )A. B. C. 或D. 【答案】C【解析】【分析】利用空间几何体,发挥直观想象,易得直线与平面的位置关系.【详解】设平面为长方体的上底面,平面为长方体的下底面,因为直线平面,所以直线通过平移后,可能与平面平行,也可能平移到平面内,所以或.【点睛】空间中点、线、面位置关系问题,常可以借助长方体进行研究,考查直观想象能力.6.经过平面外一点和平面内一点与平面垂直的平面有( )A. 1个B. 2个C. 无数个D. 1个或无数个【答案】D【解析】【分析】讨论平面外一点和平面内一点连线,与平面垂直和不垂直两种情况.【详解】(1)设平面为平面,点为平面外一点,点为平面内一点,此时,直线垂直底面,过直线的平面有无数多个与底面垂直;(2)设平面为平面,点为平面外一点,点为平面内一点,此时,直线与底面不垂直,过直线的平面,只有平面垂直底面.综上,过平面外一点和平面内一点与平面垂直的平面有1个或无数个,故选D.【点睛】借助长方体研究空间中线、面位置关系问题,能使问题直观化,降低问题的抽象性.7.如果直线与平面不垂直,那么在平面内( )A. 不存在与垂直直线B. 存在一条与垂直的直线C. 存在无数条与垂直的直线D. 任意一条都与垂直【答案】C【解析】【详解】因为直线l与平面不垂直,必然会有一条直线与其垂直,而所有与该直线平行直线也与其垂直,因此选C8.正四棱柱的高为3cm,体对角线长为cm,则正四棱柱的侧面积为( )A. 10B. 24C. 36D. 40【答案】B【解析】【分析】设正四棱柱,设底面边长为,由正四棱柱体对角线的平方等于从同一顶点出发的三条棱的平方和,可得关于的方程.【详解】如图,正四棱柱,设底面边长为,则,解得:,所以正四棱柱侧面积.【点睛】本题考查正棱柱的概念,即底面为正方形且侧棱垂直于底面的几何体,考查几何体的侧面积计算.二、填空题:请将答案填在答题纸上。9.圆台两底面半径分别为2 cm和5 cm,母线长为cm,则它的轴截面的面积是_cm2.【答案】63【解析】【分析】首先画出轴截面,然后结合圆台的性质和轴截面整理计算即可求得最终结果.详解】画出轴截面,如图,过A作AMBC于M,则BM523(cm),AM9(cm),所以S四边形ABCD63(cm2)【点睛】本题主要考查圆台的空间结构特征及相关元素的计算等知识,意在考查学生的转化能力和计算求解能力.10.圆锥的底面半径是3,高是4,则圆锥的侧面积是_【答案】【解析】分析:由已知中圆锥的底面半径是,高是,由勾股定理,我们可以计算出圆锥的母线长,代入圆锥侧面积公式,即可得到结论.详解:圆锥的底面半径是,高是,圆锥的母线长,则圆锥侧面积公式,故答案为.点睛:本题主要考查圆锥的性质与圆锥侧面积公式,意在考查对基本公式的掌握与理解,属于简单题.11.平面平面,,直线,则直线与位置关系是_【答案】【解析】【分析】利用面面垂直的性质定理得到平面,又直线,利用线面垂直性质定理得.【详解】在长方体中,设平面为平面,平面为平面,直线为直线,由于,由面面垂直的性质定理可得:平面,因为,由线面垂直的性质定理,可得.【点睛】空间中点、线、面的位置关系问题,一般是利用线面平行或垂直的判定定理或性质定理进行求解.12.正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为 【答案】【解析】试题分析:由题意可得:该三棱锥的三条侧棱都为,所以三棱锥的体积.考点:三棱锥的体积公式.13.长方体的一个顶点上的三条棱长分别是3,4,5 ,且它的8个顶点都在同一个球面上,则这个球的表面积是 【答案】【解析】【分析】利用长方体的体对角线是长方体外接球的直径,求出球的半径,从而可得结果.【详解】本题主要考查空间几何体的表面积与体积。长方体的体对角线是长方体外接球的直径,设球的半径为,则,可得,球的表面积故答案为.【点睛】本题主要考查长方体与球的几何性质,以及球的表面积公式,属于基础题.14.正六棱柱底面边长为10,高为15,则这个正六棱柱的体积是_【答案】【解析】【分析】正六棱柱是底面为正六边形的直棱柱,利用计算可得结果.【详解】因为正六棱柱底面边长为10,所以其面积,所以体积.【点睛】本题考查正六棱柱的概念及其体积的计算,考查基本运算能力.三、解答题:写出必要的文字说明、证明过程或演算步骤。15.如图,在三棱锥中,垂直于平面,.求证:平面.【答案】证明见解析【解析】分析:由线面垂直的性质可得,结合,利用面面垂直的判定定理可得平面.详解:面,在面内,又,面.点睛:证明直线和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推论;(3)利用面面平行的性质;(4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.16.已知E、F、G、H为空间四边形ABCD的边AB、BC、CD、DA上的点, 且求证:EHBD. 【答案】证明见解析【解析】【详解】证明:平面,平面,且,平面, 平面ABD,平面平面,.17.已

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论