

免费预览已结束,剩余9页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
宣威五中2018年春季学期期末检测试卷 高一理科数学一、选择题(本题共12道小题,每小题5分,共60分)1. 若直线过点且与直线垂直,则的方程为( )A. B. C. D. 2. 在中,角的对边分别为,若,则角的值为( )A. B. C. 或D. 或3. 若,则下列不等式不成立的是( )A. B.C. D.4. 等差数列的前11项和,则( )A. 18 B. 24 C. 30 D. 325.的内角、的对边分别为、,已知,该三角形的面积为,则的值为( )A. B. C. D. 6. 设.若是与的等比中项,则的最小值为( )A. B. C. D. 7. 在中,已知,那么一定是( )A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形8. 已知表示两条不同的直线, 表示平面,下列说法正确的是( )A. 若, ,则 B. 若, ,则C. 若, ,则 D. 若, ,则9. 等差数列的首项为1,公差不为0若a2,a3,a6成等比数列,则前6项的和为( )A. 24 B. 3 C.3D.810. 若直线:与圆:相切,则直线与圆:的位置关系是( )A.相交B.相切C.相离D.不确定11. 某几何体的三视图如图所示,则该几何体的体积为( ) A. B. C. D. 12.在圆内,过点有条弦的长度成等差数列,最短的弦长为数列的首项,最长的弦长为,若公差,那么的取值集合为( )A. B. C. D. 二、填空题(本题共4道小题,每小题5分,共20分)13. 已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 .14. 若直线:与直线:平行,则_.15. 已知实数满足,则函数的最大值为_。16. 如下图所示,梯形是水平放置的平面图形的直观图(斜二测画法),若,则四边形的面积是_.三、解答题(本题共6道小题,共70分)17.(本题10分)设是公比为正数的等比数列, ,.(1)求的通项公式;(2)设是首项为,公差为的等差数列,求数列的前项和.18.(本题12分)如图,在直三棱柱中, ,点为的中点。 (1)求证: ;(2)求证: 平面;(3)求异面直线与所成角的余弦值。19.(本题12分)已知圆:,点的坐标为(2,-1),过点作圆 的切线,切点为,.(1)求直线,的方程;(2)求过点的圆的切线长;(3)求直线的方程.20.(本题12分)已知数列的前项和为,且.(1)求数列的通项公式;(2)若数列的前项和为,求21.(本题12分)在中, 分别是角的对边,且,.(1)求角的值;(2)若求的面积。22.(本题12分)如图,已知 是棱长为正方体.(1)证明: (2)求二面角的平面角的余弦值的大小(3)求点到平面的距离宣威五中2018年春季学期期末检测参考答案 高一 理科数学一、选择题1.答案:A2.答案:D解析:,即,所以,所以或.3.答案:C解析:且,又,易知,故选C.4. 答案:B5.答案:A解析:由三角形面积公式,得.由余弦定理,得.由正弦定理,得.6. 答案:B解析:因为,所以,当且仅当,即时“=”成立,故选择B.7.答案:C8.答案:D9.答案:A10.答案:A解析: 依题意,直线与圆相切,则,解得.,所以,于是直线的方程为.圆心到直线的距离,所以直线与圆相交,故选A. 11.答案:B解析:由三视图可知该几何体是由一个底面半径为,高为的圆柱,再加上一个半圆锥:其底面半径为,高也为;构成的一个组合体,故其体积为;故选B.12.答案:A二、填空题13.答案:14.答案:1解析:若,则两直线不平行,所以,要使两直线平行,则有,由,解得或,当时, ,不满足条件,所以.15.答案:32解析:作出不等式组表示的平面区域,得到如图所示的阴影部分(包括边界),其中 . 设,将直线进行平移,当经过点时,取得最大值, ,显然,当取得最大值时,函数取得最大值,函数的最大值为.16.答案:5三、解答题17.答案:(1).设为等比数列的公比,则由,得,即,解得或 (舍去), 因此.所以的通项公式为.(2).由题意得.18.答案:(1). 证明:在直三棱柱,底面三边长,, 又,平面. 平面,; (2). 证明:设与的交点为,连接, 又为正方形,是的中点, 又为的中点, 平面,平面, 平面; (3). ,为与所成的角, 在中, , . 异面直线与所成角的余弦值为. 19.答案:(1).由已知得过点的圆的切线斜率的存在,设切线方程为,即.则圆心到直线的距离为,即,或.所求直线的切线方程为或,即或.(2).在中,过点的圆的切线长为.(3).直线的方程为.20.答案:(1).当时, .当时, ,所以,即,所以数列是以首项为2,公比为2的等比数列,故.(2).令,则,得,-,得,整理得21.答案:(1).由,得又(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 委托课题管理方案(3篇)
- 2025年绿色能源项目融资保函协议:先进太阳能技术研发合作
- 2025年KTV装修项目工程验收及维护保养合同
- 2025年跨区域货运车辆租赁及司机福利待遇保障合同
- 2025年高端住宅中央空调系统升级改造与智能化管理合同
- 2025年新能源汽车维修服务合作协议
- 2025年型机场无人机航拍监测服务合同
- 2025年冷链仓储租赁合同货物储存租金与仓储管理协议
- 2025年智慧城市现代服务业PPP项目合作框架协议
- 2025智能社区太阳能路灯升级改造合同
- GB/T 16657.2-1996工业控制系统用现场总线第2部分:物理层规范和服务定义
- 《人类行为与社会环境》课件
- 头位难产识别和处理
- (完整版)文献调研报告模板
- 《透视灵魂看人生》-曾仕强
- 三级口腔专科医院基本标准
- 煤矸石加工科研报告
- 中国水务行业蓝皮书
- 市政基础设施工程施工现场安全风险点清单
- 汽车金融服务复习题
- 统计过程控制
评论
0/150
提交评论