圆的基本概念和性质—知识讲解(基础)_第1页
圆的基本概念和性质—知识讲解(基础)_第2页
圆的基本概念和性质—知识讲解(基础)_第3页
圆的基本概念和性质—知识讲解(基础)_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

圆的基本概念和性质知识讲解(基础)【学习目标】1知识目标:在探索过程中认识圆,理解圆的本质属性;2能力目标:了解圆及其有关概念,理解弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,理解概念之间的区别和联系;3情感目标:通过圆的学习养成学生之间合作的习惯.【要点梳理】要点一、圆的定义及性质1. 圆的定义 (1)动态:如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径. 以点O为圆心的圆,记作“O”,读作“圆O”要点诠释: 圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可; 圆是一条封闭曲线.(2)静态:圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合.要点诠释: 定点为圆心,定长为半径;圆指的是圆周,而不是圆面;强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.2.圆的性质 旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心; 圆是轴对称图形:任何一条直径所在直线都是它的对称轴.或者说,经过圆心的任何一条直线都是圆的对称轴.要点诠释:圆有无数条对称轴; 因为直径是弦,弦又是线段,而对称轴是直线,所以不能说“圆的对称轴是直径”,而应该说“圆的对称轴是直径所在的直线”.3.两圆的性质 两个圆组成的图形是一个轴对称图形,对称轴是两圆连心线(经过两圆圆心的直线叫做两圆连心线).要点二、与圆有关的概念1. 弦弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.要点诠释:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.为什么直径是圆中最长的弦?如图,AB是O的直径,CD是O中任意一条弦,求证:ABCD.证明:连结OC、ODAB=AO+OB=CO+ODCD(当且仅当CD过圆心O时,取“=”号)直径AB是O中最长的弦.2. 弧弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;优弧:大于半圆的弧叫做优弧;劣弧:小于半圆的弧叫做劣弧.要点诠释:半圆是弧,而弧不一定是半圆;无特殊说明时,弧指的是劣弧.3.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.4.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:等弧成立的前提条件是在同圆或等圆中,不能忽视; 圆中两平行弦所夹的弧相等.【典型例题】类型一、圆的定义1在下列说法中:圆心决定圆的位置;半径决定圆的大小;半径相等的圆是同心圆;两个半径相等且圆心不同的圆是等圆,你认为正确的结论有( )A.1个 B.2个 C.3个 D.4个【答案】C.【解析】对照圆的定义及同心圆、等圆的概念进行判断.显然正确,不正确.【总结升华】考查确定圆的条件,同心圆、等圆的定义.举一反三:【变式】下列命题中,正确的个数是( )直径是弦,但弦不一定是直径; 半圆是弧,但弧不一定是半圆;半径相等且圆心不同的两个圆是等圆 ;一条弦把圆分成的两段弧中,至少有一段是优弧.A.1个 B.2个 C.3个 D.4个【答案】、是正确的,是不正确的.故选C.类型二、圆及有关概念2判断题(对的打,错的打,并说明理由)半圆是弧,但弧不一定是半圆;( )弦是直径;( )长度相等的两段弧是等弧;( )直径是圆中最长的弦. ( )【答案】 .【解析】因为半圆是弧的一种,弧可分为劣弧、半圆、优弧三种,故正确;直径是弦,但弦不一定都是直径,只有过圆心的弦才是直径,故错;只有在同圆或等圆中,长度相等的两段弧才是等弧,故错;直径是圆中最长的弦,正确.【总结升华】理解弦与直径的关系,等弧的定义.举一反三:【变式】下列说法错误的是( )A.半圆是弧 B.圆中最长的弦是直径 C.半径不是弦 D.两条半径组成一条直径【答案】弧有三类,分别是优弧、半圆、劣弧,所以半圆是弧,A正确;直径是弦,并且是最长的弦,B正确;半径的一个端点为圆心,另一个端点在圆上,不符合弦的定义,所以不是弦,C正确;两条半径只有在同一直线上时,才能组成一条直径,否则不是,故D错误.所以选D.3直角三角形的三个顶点在O上,则圆心O在 . 【答案】斜边的中点.【解析】根据圆的定义知圆心O到三角形的三个顶点距离相等,由三角形斜边的中线等于斜边的一半可知,斜边上的中点到各顶点的距离相等.【总结升华】圆心到圆上各点的距离相等.4判断正误:有、,的长度为3cm, 的长度为3cm,则与是等弧.【答案】错误.【解析】“能够完全重合的弧叫等弧”.在半径不同的圆中也可以出现弧的长度相等,但它们不会完全重合,因此,只有在同圆或等圆中,长度相等的弧才是等弧.【总结升华】在同圆或等圆中,长度相等的弧才是等弧.举一反三:【变式】有的同学说:“从优弧和劣弧的定义看,大于半圆的弧叫优弧,小于半圆的弧叫劣弧,所以优弧一定比劣弧长.”试分析这个观点是否正确.甲同学:此观点正确,因为优弧大于半圆,劣弧小于半圆,所以优弧比劣弧长.乙同学:此观点不正确,如果两弧存在于半径不相等的两个圆中,如图,O中的优弧,中的劣弧,它们的长度大小关系是不确定的,因此不能说优弧一定比劣弧长.请你判断谁的说法正确? 【答案】弧的大小的比较只能是在同圆或等圆中进行. 乙的观点正确.类型三、圆的对称性5已知:如图,两个以O为圆心的同心圆中,大圆的弦AB交

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论