专题七:三角函数与解三角形2013-2016高考数学全国卷(理)_第1页
专题七:三角函数与解三角形2013-2016高考数学全国卷(理)_第2页
专题七:三角函数与解三角形2013-2016高考数学全国卷(理)_第3页
专题七:三角函数与解三角形2013-2016高考数学全国卷(理)_第4页
专题七:三角函数与解三角形2013-2016高考数学全国卷(理)_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、(2016全国I卷12题)已知函数为的零点,为图像的对称轴,且在单调,则的最大值为(A)11 (B)9 (C)7 (D)5【答案】B考点:三角函数的性质2、(2016全国I卷17题)(本小题满分12分)的内角A,B,C的对边分别为a,b,c,已知 (I)求C;(II)若的面积为,求的周长【答案】(I)(II)【解析】试题解析:(I)由已知及正弦定理得,故可得,所以考点:正弦定理、余弦定理及三角形面积公式3、(2015全国I卷2题)sin20cos10-con160sin10= (A) (B) (C) (D)【答案】D【解析】试题分析:原式=sin20cos10+cos20sin10=sin30=,故选D.考点:诱导公式;两角和与差的正余弦公式4、(2015全国I卷8题) 函数=的部分图像如图所示,则的单调递减区间为(A)(k-14,k+34,),kz (b)(2k-14,2k+34),kz(C)(k-14,k+34),kz (D)(2k-14,2k+34),kz【答案】D【解析】试题分析:由五点作图知,解得,所以,令,解得,故单调减区间为(,),故选D.考点:三角函数图像与性质5、(2015全国I卷16题)在平面四边形ABCD中,A=B=C=75,BC=2,则AB的取值范围是 【答案】(,)【解析】试题分析:如图所示,延长BA,CD交于E,平移AD,当A与D重合与E点时,AB最长,在BCE中,B=C=75,E=30,BC=2,由正弦定理可得,即,解得=,平移AD ,当D与C重合时,AB最短,此时与AB交于F,在BCF中,B=BFC=75,FCB=30,由正弦定理知,即,解得BF=,所以AB的取值范围为(,).考点:正余弦定理;数形结合思想6. (2014全国I卷8题)设,且,则. . . .【答案】:【解析】:,即,选B7、(2014全国I卷16题)已知分别为的三个内角的对边,=2,且,则面积的最大值为 .【答案】:【解析】:由且 ,即,由及正弦定理得:,故,8、(2013全国I卷15题)设当x=时,函数f(x)sinx2cosx取得最大值,则cos=_【命题意图】本题主要考查逆用两角和与差公式、诱导公式、及简单三角函数的最值问题,是难题.【解析】=令=,则=,当=,即=时,取最大值,此时=,=.9、(2013全国I卷17题)(本小题满分12分)如图,在ABC中,ABC90,AB=,BC=1,P为ABC内一点,BPC90(1)若PB=,求PA;(2)若APB150,求tanPBA【命题意图】本题主要考查利用正弦定理、余弦定理解三角形及两角和与差公式,是容易题.【解析】()由已知得,PBC=,PBA=30o,在PBA中,由余弦定理得=,PA=;()设PBA=,由已知得,PB=,在PBA中,由正弦定理得,化简得,=,=.10、(2016全国II卷7题)若将函数y=2sin 2x的图像向左平移个单位长度,则平移后图象的对称轴为(A) (B)(C) (D)【解析】B平移后图像表达式为,令,得对称轴方程:,故选B11、(2016全国II卷9题)若,则=(A)(B)(C)(D)【解析】D,故选D12、(2016全国II卷13题)的内角A,B,C的对边分别为a,b,c,若,则 【解析】 ,由正弦定理得:解得13、(2015全国II卷17题)ABC中,D是BC上的点,AD平分BAC,ABD是ADC面积的2倍。()求;() 若=1,=求和的长.14、(2014全国II卷4题)钝角三角形ABC的面积是,AB=1,BC= ,则AC=( )A. 5B. C. 2D. 1【答案】B【KS5U解析】15、(2014全国II卷14题)函数的最大值为_. 【答案】 1【KS5U解析】16、(2013全国II卷15题)设为第二象限角,若 ,则=_.17、(2013全国II卷17题)(本小题满分12分)ABC在内角A、B、C的对边分别为a,b,c,已知a=bcosC+csinB。()求B;()若b=2,求ABC面积的最大值。18、(2013全国III卷5题)若 ,则 (A) (B) (C) 1 (D) 【答案】A【解析】试题分析:由,得或,所以,故选A考点:1、同角三角函数间的基本关系;2、倍角公式19、(2013全国III卷8题)在中,BC边上的高等于,则 (A) (B) (C) (D)【答案】C【解析】试题分析:设边上的高线为,则,所以,由余弦定理,知,故选C考点:余弦定理20、(2013全国III卷14题)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论