免费预览已结束,剩余4页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课题:一次函数、二次函数、幂函数编制人: 审核: 下科行政:【学习目标】1、理解并掌握一次函数、二次函数的定义、图象和性质;2、了解幂函数的概念;3、能利用二次函数、一元二次方程及一元二次不等式之间的关系去解决有关问题。【课前预习案】一、基础知识梳理 1、一、二次函数的定义及性质函数名称一次函数二次函数解析式图象定义域RR值域RR1在上是在上是在 上是减函数;在 上是增函数在 上是减函数;在 上是增函数奇偶性当 时是奇函数当 时是非奇非偶函数当 时是偶函数当 时是非奇非偶函数顶点( , )对称性当 时,关于原点对称图象关于直线 对称2、二次函数的三种表示法:一般式:=顶点式:若二次函数的顶点坐标为(,则=两点式:若是一元二次方程两根,则=3、幂函数的图象和性质(1)定义:形如 的函数叫幂函数(2)同一坐标系下,五种幂函数的图象如下(3)幂函数的性质定义域值域奇偶性单调性定点二、练一练1、下列函数中是幂函数的是( ) ; (A) (B) (C) (D) 2、函数的图象关于直线对称的充要条件是( )(A) (B) (C) (D) 3、一次函数在R上为增函数,则的取值范围是4、幂函数的图象过点,则的解析式是【课内探究】一、讨论、展示、点评、质疑探究一 幂函数的图象及应用例1、已知函数,为何值时, (1)是幂函数;(2)在(1)的条件下是上的增函数; (3) 是正比例函数;(4) 是反比例函数拓展1、已知幂函数为偶函数,且在区间上是减函数(1)求函数的解析式(2)讨论函数的奇偶性探究二、二次函数的值域与最值例2、函数在闭区间上的最小值记为(1)试求出 的函数表达式(2)作出的图象再写出的最小值拓展2、已知函数,若在区间上有最大值5,最小值2(1)求的值(2)若,在上单调,求的取值范围探究三、二次函数的综合应用例3(1)若不等式对一切恒成立,则的取值范围是( )(A) (B) (C) (D) (2)设二次函数,若,则的值为( )(A)正数 (B)负数 (C)非负数 (D)正、负或零都有可能 (3)直线与曲线有4个交点,则的范围是二 总结提升1、知识方面2、数学思想方面【课后训练案】一选择题1、已知某二次函数的图象与函数的图象的形状一样,开口方向相反,且其顶点为,则此函数的解析式为( )(A) (B) (C) (D)2、已知函数,若,则( ) (C) (D) 的大小不能确定3、若且,那么的最小值为( )(A)2 (B) (C) (D) 04、若二次函数满足,则等于( )(A) (B) (C) (D) 5、函数的定义域被分成了四个不同的单调区间,则实数的取值范围是( )(A) (B) (C) (D) 6、对于区间上有意义的两个函数与,如果对于区间中的任意数均有,则称函数与在区间上是密切函数,称为密切区间,若与在某个区间上是“密切函数“,则它的一个密切区间可能是( )(A) (B) (C) (D) 7、函数在区间上的最小值是 ,最大值是 。8、设二次函数在上有最大值4,则实数的值是 。9、设函数满足,若存在,使得同时成立,则实数的范围是 。10、在区间上的最大值为2,求的值。11、二次函数,设的两个实根为(1)如果且,求的值;(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 论文格式(中南财经政法大学)
- 新闻标题失范的类型及危害
- 湖南省培育发展战略性新兴产业专家委员会名单名单简历
- 临床试验远程监查与药物警戒系统的数据联动
- 导师综合评语
- 胃癌围手术期全程营养管理2026
- 汽车分期业务风险控制问题及对策论文
- 如何学写数学小论文
- 参考文献格式网
- 毕业论文开题报告撰写规范与格式要求-开题报告-
- 银行保洁服务投标方案技术标
- MOOC 灰色系统理论-南京航空航天大学 中国大学慕课答案
- 2024-2029年中国冻干口崩片行业市场现状分析及竞争格局与投资发展研究报告
- 个人医保代办委托书
- 销售人员客户需求分析报告
- 消防安全评估投标方案技术标
- 驾照体检表完整版本
- 人美版4年级上册《美术》期末考试试题及答案
- 利润问题-2023-2024学年六年级数学上册典型例题解析苏教版
- 武夷山风景区的总体规划
- 卫生统计学智慧树知到答案章节测试2023年湖南中医药大学
评论
0/150
提交评论