

已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省深圳市高级中学2019届高三数学适应性考试(6月)试题 文一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1集合,则= ( )A BC D2.若复数,则的虚部为 ( )A. B C D. .以点为圆心,且与轴相切的圆的标准方程为 ( )A BC D4.已知,则是A偶函数,且在是增函数 B奇函数,且在是增函数C偶函数,且在是减函数 D奇函数,且在是减函数5. 某公司为激励创新,计划逐年加大研发奖金投入。若该公司2015年全年投入研发奖金130万元,在此基础上,每年投入的研发奖金比上一年增长12,则该公司全年投入的研发奖金开始超过200万元的年份是(参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30) A.2018年 B. 2019年 C.2020年 D.2021年 6如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为A9 B18 C20 D357.在区间上随机取两个数,记为事件“”的概率,为事件“”的概率,则A B C D8已知ABC是边长为1的等边三角形,点分别是边的中点,连接并延长到点,使得,则的值为 A. B. C. D. 9.将函数的图象向右平移,再把所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,则下列说法正确的是( )A. 函数的最大值是 B. 函数的最小正周期为C. 函数在区间上单调递增 D. 函数的图像关于直线对称10.已知直线与抛物线相切,则双曲线的离心率为( )A. B. C. D.11.如图,平面四边形ABCD中,E,F是AD,BD中点,AB=AD=CD=2,将沿对角线BD折起至,使平面,则四面体中,下列结论不正确的是( )A. 平面 B.异面直线CD与所成的角为 C.异面直线EF与所成的角为 D.直线与平面BCD所成的角为 12.已知 ,则下列不等式一定成立的是( ) A. B. C. D. 二、填空题:本大题共4小题,每小题5分,满分20分13等差数列中,且成等比数列,数列前20项的和= 14已知实数,满足约束条件,若的最小值为,则实数 15函数错误!未找到引用源。的值域为_.16.在三棱锥中,面面, 则三棱锥的外接球的表面积是_三、解答题(本大题共 6小题,满分 80 分解答须写出文字说明、证明过程或演算步骤)17.(本题满分12分)在中,角A、B、C所对的边分别为,且满足。 (1) 求角A的大小;(2)若,求周长的最大值。18.(本小题满分12分)如图,AB是圆O的直径,点C是圆O上异于A,B的点,PO垂直于圆O所在的平面,且PO=OB=1()若D为线段AC的中点,求证:AC平面PDO;()求三棱锥P-ABC体积的最大值;()若,点E在线段PB上,求CE+OE的最小值19(本题满分12分)有一个同学开了一个小卖部,他为了研究气温对热饮饮料销售的影响,经过统计,得到一个卖出的热饮杯数与当天气温的散点图对比表: 20.(本题满分12分)如图,椭圆C:的右焦点为F,过点F的直线与椭圆相交于,两点,直线:与轴相交于点E,点M在直线上,且满足轴。(1)当直线与轴垂直时,求直线AM的方程;()证明:直线AM经过线段EF的中点。21 (本小题满分12分)已知函数(1)设,讨论函数的单调性()若,证明:在恒成立。请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22(本小题满分10分)【选修4-4:坐标系与参数方程选讲】已知曲线C1的参数方程是,以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程是(1) 求曲线C1与C2交点的极坐标;(2) A、B两点分别在曲线C1与C2上,当|AB|最大时,求的面积(O为坐标原点)23(本小题满分10分)选修45:不等式选讲.已知不等式的解集为,函数()求的值,并作出函数的图象;()若关于的方程恰有两个不等实数根,求实数的取值范围.深圳高级中学高考适应性考试 文科数学答案 一、B D A C B B B D C B CC二、13. 200或330 14 15. 16. 12.解:, , ,设,在,可证,即,则,所以在上单调递减,所以.17.解:(1)依正弦定理可将化为 又因为在中,所以有., (2)因为的周长,所以当最大时,的周长最大.解法一: (当且仅当时等号成立)所以周长的最大值1218解法一:()在中,因为为的中点,所以又垂直于圆所在的平面,所以因为,所以平面.()因为点在圆上,所以当时,到AB的距离最大,且最大值为1.又,所以面积的最大值为又因为三棱锥的高,故三棱锥体积的最大值为()在中,所以,同理,所以在三棱锥中,将侧面BCP绕PB旋转至平面,使之与平面共面,如图所示。当共线时,取得最小值又因为,所以垂直平分,即为中点从而,亦即的最小值为.解法二:()()同解法一.()在中,所以,同理所以,所以.在三棱锥中,将侧面BCP绕PB旋转至平面,使之与平面共面,如图所示。当共线时,取得最小值.所以在中,由余弦定理得:从而所以的最小值为.22解:(1)由,得,两式平方作和得:x2+(y2)2=4,即x2+y24y=0;由=4cos,得2=4cos,即x2+y2=4x两式作差得:x+y=0,代入C1:x2+y24y=0得交点为(0,0),(2,2)其极坐标为(0,0),();(2)如图,由平面几何知识可知,A,C1,C2,B依次排列且共线时|AB|最大此时|AB|=,直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 外贸企业出口合同风险防范措施
- 餐饮业供应链整合与2025年成本控制与信息化建设研究报告
- 电力公司五一活动方案
- 祠堂文化活动方案
- 电玩城兑换礼品活动方案
- 电商主播优惠活动方案
- 甲醛治理活动方案
- 石匠技艺活动方案
- 研究生开学报到活动方案
- 睫毛促销活动元旦活动方案
- 小学二年级上册心理健康教案(适合北京教育出版社)
- 房产代持协议
- 法硕刑事诉讼法学三辩护制度
- 《小英雄雨来》阅读测试题附答案
- 常用十大翻译技巧
- 常用水利规范目录
- 2022中国神经外科重症患者营养治疗专家共识(全文)
- 双绞线链路测试报告
- 高级财务管理(第三版)第02章-财务估价模型概览
- 人教版(新起点)英语六年级上Unit 1《In China》单元测试卷
- 中频电疗法课件
评论
0/150
提交评论