




已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3收敛定理的证明,本节来完成对傅里叶级数收敛定理的证明,为此先,证明两个预备定理.,预备定理1(贝塞尔(Bessel)不等式)若函数f在,上可积,则,式.,返回,证令,考察积分,由于,根据傅里叶系数公式(1(10)可得,将(3),(4)代入(2),可得,因而,所以正项级数,的部分和数列有界,因而它收敛且有不等式(1)成立.,推论1若f为可积函数,则,这个推论称为黎曼勒贝格定理.,推论2若f为可积函数,则,证由于,所以,其中,左边的极限为零.,同样可以证明,显见与和f一样在上可积.由推论1,(7),当t=0时,被积函数中的不定式由极限,来确定.,证在傅里叶级数部分和,中,用傅里叶系数公式代入,可得,分,再由第十二章3的(21)式,即,由上面这个积分看到,被积函数是周期为的函数,这就得到,(8)式也称为f的傅里叶级数部分和的积分表达式.,现在证明定理15.3(收敛定理).重新叙述如下:,于f在点x的左、右极限的算术平均值,即,证只要证明在每一点x处下述极限成立:,即,或证明同时有,与,先证明(10)式.对(9)式积分后得到,又得到,从而(10)式可改写为,令,由1,(13)式得到,所以在上可积.根据预备定理1和推论2,这就证得(12)式成立,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 平衡记分卡课件
- 农发行朝阳市凌源市2025秋招半结构化面试题库及参考答案
- 新能源供应链2025年本土化与全球化平衡策略创新研究
- 农发行安顺市平坝区2025秋招笔试专业知识题专练及答案
- 2025-2030年新能源汽车充电设施产业链上下游分析报告
- 2025年高三历史生物试卷及答案
- 新能源行业人才流动与竞争格局深度分析:2025年发展蓝图
- 平法图集讲解课件
- 沼气工程在生态农业中的应用与新能源产业链融合报告(2025版)
- 工业刀具生产安全培训课件
- 配电箱巡检表
- 机场监控施工方案
- 【品牌手册】无忧传媒品牌手册-市场营销策划-品牌营销案例与品牌手册
- 北京餐厨垃圾收运合同范本
- 压力容器使用单位安全员题库
- 2025届高考英语大作文读后续写写作思路与技巧课件
- 翻译在文化遗产保护中的作用
- 大数据产业大数据应用技术创新与实践计划
- 宜家家居案例分析
- 不锈钢安装协议书范本(二篇)
- LS-T 8014-2023 高标准粮仓建设标准
评论
0/150
提交评论