

免费预览已结束,剩余2页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二章 数列单元复习【知识点】(一)等差、等比数列的性质1.等差数列an的性质(1)am=ak+(mk)d,d=.(2)若数列an是公差为d的等差数列,则数列an+b(、b为常数)是公差为d的等差数列;若bn也是公差为d的等差数列,则1an+2bn(1、2为常数)也是等差数列且公差为1d+2d.(3)下标成等差数列且公差为m的项ak,ak+m,ak+2m,组成的数列仍为等差数列,公差为md.(4)若m、n、l、kN*,且m+n=k+l,则am+an=ak+al,反之不成立.(5)设A=a1+a2+a3+an,B=an+1+an+2+an+3+a2n,C=a2n+1+a2n+2+a2n+3+a3n,则A、B、C成等差数列.(6)若数列an的项数为2n(nN*),则S偶S奇=nd,=,S2n=n(an+an+1)(an、an+1为中间两项);若数列an的项数为2n1(nN*),则S奇S偶=an,=,S2n1=(2n1)an(an为中间项).2.等比数列an的性质(1)am=akqmk.(2)若数列an是等比数列,则数列1an(1为常数)是公比为q的等比数列;若bn也是公比为q2的等比数列,则1an2bn(1、2为常数)也是等比数列,公比为qq2.(3)下标成等差数列且公差为m的项ak,ak+m,ak+2m,组成的数列仍为等比数列,公比为qm.(4)若m、n、l、kN*,且m+n=k+l,则aman=akal,反之不成立.(5)设A=a1+a2+a3+an,B=an+1+an+2+an+3+a2n,C=a2n+1+a2n+2+a2n+3+a3n,则A、B、C成等比数列,设M=a1a2an,N=an+1an+2a2n,P=a2n+1a2n+2a3n,则M、N、P也成等比数列.(二)对于等差、等比数列注意以下设法:如三个数成等差数列,可设为ad,a,a+d;若四个符号相同的数成等差数列,知其和,可设为a3d,ad,a+d,a+3d.三个数成等比数列,可设为,a,aq,若四个符号相同的数成等比数列,知其积,可设为,aq,aq3.(三)用函数的观点理解等差数列、等比数列1.对于等差数列,an=a1+(n1)d=dn+(a1d),当d0时,an是n的一次函数,对应的点(n,an)是位于直线上的若干个点.当d0时,函数是增函数,对应的数列是递增数列;同理,d=0时,函数是常数函数,对应的数列是常数列;d0时,函数是减函数,对应的数列是递减函数.若等差数列的前n项和为Sn,则Sn=pn2+qn(p、qR).当p=0时,an为常数列;当p0时,可用二次函数的方法解决等差数列问题.2.对于等比数列:an=a1qn1.可用指数函数的性质来理解.当a10,q1或a10,0q1时,等比数列是递增数列;当a10,0q1或a10,q1时,等比数列an是递减数列.当q=1时,是一个常数列.当q0时,无法判断数列的单调性,它是一个摆动数列.【典型例题】例1已知数列an,构造一个新数列a1,(a2a1),(a3a2),(anan1),此数列是首项为1,公比为的等比数列.(1)求数列an的通项;(2)求数列an的前n项和Sn.例2在等比数列an(nN*)中,a11,公比q0.设bn=log2an,且b1+b3+b5=6,b1b3b5=0.(1)求证:数列bn是等差数列;(2)求bn的前n项和Sn及an的通项an;(3)试比较an与Sn的大小.例3已知an是等比数列,a1=2, a3=18;bn是等差数列,b1=2,b1+b2+b3+b4=a1+a2+a320.(1)求数列bn的通项公式;(2)求数列bn的前n项和Sn的公式;(3)设Pn=b1+b4+b7+b3n2, Qn=b10+b12+b14+b2n+8,其中n=1,2,试比较Pn与Qn的大小,并证明你的结论.例4 已知等差数列an的首项a1=1,公差d0,且第二项、第五项、第十四项分别是等比数列bn的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工厂合作合同范本
- 古建材料合同范本
- 2025年地区经销商授权合同书
- 2025婚庆服务合同陷阱揭秘
- 车辆过户尾款合同范本
- 房屋出售经纪合同范本
- 和模特签约合同范本
- 旅游订金合同范本
- 企业车辆抵押合同范本
- 建材家居定制合同范本
- GB/T 45607-2025船舶与海上技术船舶系泊和拖带设备系泊导缆孔底座
- 外墙高空蜘蛛人作业施工方案
- 新常态下的中国消费-麦肯锡
- 酒店楼层分租协议书
- 血液肿瘤科知识培训课件
- 网络安全产品代理销售合同
- 广播工程系统施工方案
- 新能源汽车概论 课件 5.1新能源汽车高压安全与防护
- 带状疱疹护理查房
- 2025福建德化闽投抽水蓄能有限公司招聘15人笔试参考题库附带答案详解
- VR体验馆商业计划书
评论
0/150
提交评论