



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
初中数学二次函数知识点总结i.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax+bx+c(a,b,c为常数,a0,且a决定函数的开口方向,a0时,开口方向向上,a二次函数表达式的右边通常为二次三项式。ii.二次函数的三种表达式一般式:y=ax+bx+c(a,b,c为常数,a0)顶点式:y=a(x-h)+k 抛物线的顶点p(h,k)交点式:y=a(x-x)(x-x ) 仅限于与x轴有交点a(x ,0)和 b(x,0)的抛物线注:在3种形式的互相转化中,有如下关系:h=-b/2a k=(4ac-b)/4a x,x=(-bb-4ac)/2aiii.二次函数的图像在平面直角坐标系中作出二次函数y=x的图像,可以看出,二次函数的图像是一条抛物线。iv.抛物线的性质1.抛物线是轴对称图形。对称轴为直线 x = -b/2a。对称轴与抛物线唯一的交点为抛物线的顶点p。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点p,坐标为:p ( -b/2a ,(4ac-b)/4a )当-b/2a=0时,p在y轴上;当= b-4ac=0时,p在x轴上。3.二次项系数a决定抛物线的开口方向和大小。当a0时,抛物线向上开口;当a4.一次项系数b和二次项系数a共同决定对称轴的位置。当a与b同号时(即ab0),对称轴在y轴左;当a与b异号时(即ab5.常数项c决定抛物线与y轴交点。抛物线与y轴交于(0,c)6.抛物线与x轴交点个数= b-4ac0时,抛物线与x轴有2个交点。= b-4ac=0时,抛物线与x轴有1个交点。= b-4acv.二次函数与一元二次方程特别地,二次函数(以下称函数)y=ax+bx+c,当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax+bx+c=0此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。1.二次函数y=ax,y=a(x-h),y=a(x-h) +k,y=ax+bx+c(各式中,a0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴:当h0时,y=a(x-h)的图象可由抛物线y=ax向右平行移动h个单位得到,当h当h0,k0时,将抛物线y=ax向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h) +k的图象;当h0,k当h0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)+k的图象;当h因此,研究抛物线 y=ax+bx+c(a0)的图象,通过配方,将一般式化为y=a(x-h)+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.2.抛物线y=ax+bx+c(a0)的图象:当a0时,开口向上,当a3.抛物线y=ax+bx+c(a0),若a0,当x -b/2a时,y随x的增大而减小;当x -b/2a时,y随x的增大而增大.若a4.抛物线y=ax+bx+c的图象与坐标轴的交点:(1)图象与y轴一定相交,交点坐标为(0,c);(2)当=b-4ac0,图象与x轴交于两点a(x,0)和b(x,0),其中的x1,x2是一元二次方程ax+bx+c=0(a0)的两根.这两点间的距离ab=|x-x|当=0.图象与x轴只有一个交点;当0时,图象落在x轴的上方,x为任何实数时,都有y0;当a5.抛物线y=ax+bx+c的最值:如果a0(a顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值6.用待定系数法求二次函数的解析式(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax+bx+c(a0).(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)+k(a0).(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 进出口贸易合同范本与风险防控
- 《市场营销 》课件第二章 市场营销环境分析
- 2025版买卖合同图片下载版权授权合同模板
- 2025版房屋买卖合同汇编:房屋买卖合同中相邻权与公共区域使用权规范
- 二零二五电商客服与售后培训服务合同
- 二零二五年专业安保人员派遣劳务合同
- 二零二五年度矿泉水生产线设备租赁合同
- 2025版文化演艺广告设计制作与票务合同
- 二零二五年度网络视频广告投放合作协议
- 二零二五年度离婚后子女轮流抚养责任协议范本
- 呼吸机断电的应急演练
- 视觉传达设计保研面试问题
- 慰问品采购项目供货方案
- 早期子宫内膜癌患者保留生育功能治疗专家共识
- 医院护理培训课件:《注射安全》
- 5G智慧执法解决方案
- 2024年南宁铁路局招聘笔试参考题库附带答案详解
- (完整)中医症候积分量表
- 公共管理研究方法 课件 第11、12章 定性比较分析、写作
- 模块三 环境感知技术
- 人教八年级下册期末物理综合测试试卷及答案解析
评论
0/150
提交评论