

免费预览已结束,剩余13页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2018-2019学年第二学期高二期中考试数学学科试题(文科)一、填空题:每小题5分,共70分.请把答案直接填写在答题卷相应位置.1.已知集合,则_.【答案】【解析】【分析】要求,即将集合中的元素写在同一个集合中,重复的写一次。【详解】解:,所以,【点睛】本题考查了集合的并集运算,并集就是将两个集合中的元素写在同一个集合中,相同的元素只写一次,属于简单题。2.命题的否定是_【答案】【解析】【分析】命题是特称命题,它的否定应是全称命题。【详解】解:命题的否定为。【点睛】本题考查了特称命题与全称命题的关系,属于简单题。3.函数的定义域为_.【答案】【解析】的定义域是, ,故得到函数定义域为 取交集,故答案为.4.已知复数,其中i是虚数单位,则的值是_【答案】【解析】【分析】利用复数的运算法则、模的计算公式即可得出【详解】复数z=(1+i)(1+3i)=13+4i=2+4i,|z|=故答案为:【点睛】本题考查了复数的运算法则、模的计算公式,考查了计算能力,属于基础题5.已知幂函数()的图象关于轴对称,且在上是减函数,则_.【答案】1【解析】幂函数f(x)xm22m3(mN*)的图象关于y轴对称,且在(0,+)上是减函数, 是偶数且 解得m=1故答案为16.如图,一个类似杨辉三角的数阵,请写出第n(n2)行的第2个数为_【答案】n2+2【解析】分析:由三角形数阵看出,从第二行开始起,每一行的第二个数与它的前一行的第二个数的差构成以为公差的等差数列,然后利用累加的办法求得第行的第二个数详解:由图可以看出 由此看出 , 以上个式子相加得,所以点睛:本题主要考查了归纳推理的应用,解答此题的关键是根据数表数阵,得到数字的排布规律,即从第二行开始起,每一行的第二个数与它的前一行的第二个数的差构成以为公差的等差数列,此题是中档试题7.若复数满足(为虚数单位),则 的最小值是_.【答案】1【解析】分析:复数满足,设,利用复数的模的计算公式与三角函数求值即可求出详解:由复数满足,设,则,当且仅当时等号成立,所以的最小值为点睛:本题考查了复数的运算法则、模的计算公式及其三角函数的求解,着重考查了推理与运算能力,属于基础题8.偶函数的图象关于直线对称,则_【答案】3【解析】试题分析根据函数奇偶性和对称性的性质,得到f(x+4)=f(x),即可得到结论解:法1:因为偶函数y=f(x)的图象关于直线x=2对称,所以f(2+x)=f(2x)=f(x2),即f(x+4)=f(x),则f(1)=f(1+4)=f(3)=3,法2:因为函数y=f(x)的图象关于直线x=2对称,所以f(1)=f(3)=3,因为f(x)是偶函数,所以f(1)=f(1)=3,故答案为:3考点:函数奇偶性的性质9.若是不等式成立的充分不必要条件,则实数的范围是_.【答案】【解析】【分析】先求得不等式的解集,然后根据充分不必要条件列不等式组,解不等式组求得的取值范围.【详解】不等式可转化为,解得,由于是的充分不必要条件,结合集合元素的互异性,得到.【点睛】本小题主要考查一元二次不等式的解法,考查充分不必要条件的概念,还考查了集合元素的互异性,属于基础题.一元二次不等式的解法主要通过因式分解,求得一元二次不等式对应的一元二次方程的两个根,由此解出不等式的解集.集合的三要素是:确定性、互异性以及无序性.10.定义在上的函数满足则_.【答案】【解析】【分析】表示周期为3的函数,故,故可以得出结果。【详解】解:表示周期为3的函数,。【点睛】本题考查了函数的周期性,解题的关键是要能根据函数周期性的定义得出函数的周期,从而进行解题。11.已知函数为上的单调减函数,则实数的取值范围是_【答案】【解析】【分析】根据函数为递减函数,则两段函数各自为单调递减函数,且函数的左段的最小值大于等于右段函数的最大值,即可求得a的取值范围。【详解】当时,一次函数单调递减,则: ,且当时,应满足: ,解得: ,综上可得,实数的取值范围是,即 【点睛】对于分段函数的单调性,有两种基本的判断方法:一保证各段上同增(减)时,要注意上、下段间端点值间的大小关系;二是画出这个分段函数的图像,结合函数图像、性质进行直观的判断研究函数问题离不开函数图像,函数图像反映了函数的所有性质,在研究函数问题时要时时刻刻想到函数的图像,学会从函数图像上去分析问题、寻找解决问题的方法12.若函数存在两个零点,且一个为正数,另一个为负数,则的取值范围为_.【答案】 【解析】【分析】由题意可得|2x4|a有两个不等实根,作出函数y|2x4|的图象,观察图象特点,平移直线ya,即可得到所求范围【详解】函数f(x)|2x4|a存在两个零点,即为|2x4|a有两个不等实根,作出函数y|2x4|的图象,可得图象经过点(0,3),当x0时,图象趋向于直线y4,由直线ya,平移可得当3a4时,函数y|2x4|的图象与直线ya有两个交点,一个交点的横坐标为正,另一个交点的横坐标为负的,故答案为:(3,4)【点睛】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解13.设函数,若恒成立,则实数的取值范围为_.【答案】【解析】【分析】恒成立,故为最小值,所以分段函数的每一段均要大于等于,然后分情况讨论解决问题。【详解】解:恒成立,为函数最小值当时,解得,当时函数的对称轴为因为为最小值所以。【点睛】本题考查了分段函数的最值问题,解题时要对每一段进行分析求其最值,主要考查了分类讨论的思想。14.函数的定义域为,若满足在内是单调函数,存在,使在上的值域为,那么叫做对称函数,现有是对称函数, 那么实数的取值范围是_.【答案】【解析】【分析】是对称函数,显然在内是单调减函数,满足条件;根据函数的单调性,由条件可得,即,等价于方程在有两个不同的解,从而解得k的范围。【详解】解:因为函数是对称函数所以函数满足题中的条件,显然函数是单调减函数,当函数满足条件时,设区间,因为在上的值域为,根据函数的单调性可得,即,等价于方程在有两个不同的解,令,故【点睛】本题考查了函数的单调性与值域的问题,解决该问题的一般方法是由单调性得出函数的大致图形,根据图形可以求出函数的值域。二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤.15.已知集合,(1)若,求的值;(2)若,求的取值范围【答案】(1)(2)【解析】试题分析:先将集合中的不等式解出来得到两集合的范围,而后集合交集的边界值为两集合的边界值得到的值,由集合间的子集关系借助于数轴可得到的取值范围试题解析:化简得 A=, B=. 6分(1)因为所以有. 10分(2)因为,即解得. 14分考点:1.一元二次不等式,分式不等式解法;2.集合的子集关系16.已知命题:指数函数在上单调递减,命题:关于的方程的两个实根均大于3.若或为真,且为假,求实数的取值范围【答案】.【解析】【分析】首先确定p,q为真时a的取值范围,由题意可知,p真q假,或者p假q真,据此求解实数的取值范围即可.【详解】若p为真命题,则f(x)(2a6)x在R上单调递减, 02a61,解得 3a若q为真命题,令f(x)x23ax2a21,则有整理得解得a.又由已知“p或q”为真,“p且q”为假,所以应有p真q假,或者p假q真 若p真q假,则,此时a无解若p假q真,则,解得a3或a.综合知实数a的取值范围为【点睛】本题主要考查由命题真假求参数的方法,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.17.已知函数是定义在的奇函数(其中是自然对数的底数).(1)求实数的值;(2)若,求实数的取值范围.【答案】(1)1;(2).【解析】【分析】(1)因为函数是上的奇函数,故可得方程,从而可得的值,然后再对的值进行验证;(2)根据导数可求出函数为单调递增函数,又由于函数为奇函数,故将不等式转化为,再根据函数的定义域建立出不等式组,从而得出的取值范围。【详解】解:(1)是定义在的奇函数, ,当m=1时, .(2) ,且,当且仅当时,取“=”,在恒成立, 在单调递增,又函数为奇函数, , .【点睛】本题考查了函数性质的综合运用能力,解题的关键是要能够准确地求出函数的奇偶性与单调性,函数奇偶性的常见判断方法是定义法、特殊值法等,函数单调性常见的判断方法是定义法、导数法等。18.某乡镇为了进行美丽乡村建设,规划在长为10千米的河流的一侧建一条观光带,观光带的前一部分为曲线段,设曲线段为函数,(单位:千米)的图象,且曲线段的顶点为;观光带的后一部分为线段,如图所示. (1)求曲线段对应的函数的解析式;(2)若计划在河流和观光带之间新建一个如图所示的矩形绿化带,绿化带由线段构成,其中点在线段上当长为多少时,绿化带的总长度最长?【答案】(1) .(2)当OM长为1千米时,绿化带的总长度最长.【解析】【分析】(1)由题意首先求得a,b,c的值,然后分段确定函数的解析式即可;(2)设,由题意得到关于t的函数,结合二次函数的性质确定当长为多少时,绿化带的总长度最长即可.【详解】(1)因为曲线段OAB过点O,且最高点为,解得.所以,当时,因为后一部分为线段BC,当时,综上,.(2)设,则,由,得,所以点,所以,绿化带的总长度:.所以当时.【点睛】本题考查分段函数求函数值,要确定好自变量的取值范围,再代入相应的解析式求得对应的函数值,分段函数分段处理,这是研究分段函数图象和性质最核心的理念.19.已知函数且(1)当时求的值域;(2)设,若方程有实根,求的取值范围.【答案】(1);(2).【解析】【分析】(1)先根据定义域求出的范围,然后再根据函数是单调增函数,求出函数的值域;(2)方程有实根等价于方程在上有解,转化为一元二次方程根的分布问题进行求解。【详解】解:(1),函数单调增函数,所以函数的值域为。(2)函数的定义域为,函数的定义域为,因方程有实根,所以在有实根,即在有实根,化简整理得,方程在上有解 , 设 对称轴. 即,因为且在为增函数,所以方程在无解。,即,则,解得 ,综上.【点睛】本题考查了对数函数的知识、函数值域问题、函数与方程的关系,同时还考查了换元法、数形结合等思想方法。20.已知函数.(1)当时,函数恰有两个不同的零点,求实数的值;(2)当时,若对任意,恒有,求的取值范围;若,求函数在区间上的最大值【答案】(1);(2).;.【解析】【分析】(1)当时,考虑的解,化简后得到或者,它们共有两个不同的零点,解得即可;(2)在上恒成立等价于在上恒成立,因此考虑在上的最小值和在上的最大值即可得到的取值范围;(3)可化为分段函数的形式,分情况讨论函数的单调性,得到g(x).【详解】解析:(1)当时, ,由解得或,由解得或因为恰有两个不同零点且,所以,或 ,所以(2)当时, ,因为对于任意,恒有, 即 ,即,因为时, ,所以, 即恒有 令, 当时, , ,所以, 所以, 所以 当时, ,这时在上单调递增,此时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 微课程制作培训
- 大学五爱教育体系构建
- 运动饮食与健康
- 工业排放源治理技术的创新与实践
- 陕西国防工业职业技术学院《幼儿舞蹈创编》2023-2024学年第一学期期末试卷
- 幼儿园理发流程规范
- 吉林交通职业技术学院《设计市场调研》2023-2024学年第一学期期末试卷
- 2025年热固化油墨项目申请报告
- 铸锻件超声检测技术
- 坐骨肿瘤影像诊断
- 2024阀控式铅酸密封蓄电池
- 2022-2023学年山东省泰安市高一下学期期末数学试题(解析版)
- 仓库搬运装卸服务方案
- 示范区城区控制性详细规划说明书
- 马鞍山二中理科创新人才实验班招生考试物理试题
- GB/T 44198-2024空间站科学实验系统集成与验证要求
- 新教材人教版高中物理选择性必修第三册全册各章节知识点考点
- 安徽省马鞍山市2024-2025学年高一数学下学期期末考试试题含解析
- 车库业主与租赁者安装充电桩协议书
- 劳务班组施工合同范本(2024版)
- RBA管理体系程序文件(系列)
评论
0/150
提交评论