

免费预览已结束,剩余18页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
20182019学年度第二学期期末抽测高一年级数学试题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.若直线过两点,则的斜率为( )A. B. C. 2D. 【答案】C【解析】【分析】直接运用斜率计算公式求解.【详解】因为直线过两点,所以直线的斜率,故本题选C.【点睛】本题考查了斜率的计算公式,考查了数学运算能力、识记公式的能力.2.将一个总体分为甲、乙、丙三层,其个体数之比为,若用分层抽样方法抽取容量为200的样本,则应从丙层中抽取的个体数为( )A. 20B. 40C. 60D. 100【答案】B【解析】【分析】求出丙层所占的比例,然后求出丙层中抽取的个体数【详解】因为甲、乙、丙三层,其个体数之比为,所以丙层所占的比例为,所以应从丙层中抽取的个体数为,故本题选B.【点睛】本题考查了分层抽样中某一层抽取的个体数的问题,考查了数学运算能力.3.在中,若,则等于( )A. 3B. 4C. 5D. 6【答案】D【解析】【分析】直接运用正弦定理求解即可.【详解】由正弦定理可知中:,故本题选D.【点睛】本题考查了正弦定理的应用,考查了数学运算能力.4.在正方体中,与棱异面的棱有( )A. 8条B. 6条C. 4条D. 2条【答案】C【解析】【分析】在正方体12条棱中,找到与平行的、相交的棱,然后计算出与棱异面的棱的条数.【详解】正方体共有12条棱,其中与平行的有共3条,与与相交的有共4条,因此棱异面的棱有条,故本题选C.【点睛】本题考查了直线与直线的位置关系,考查了异面直线的判断.5.若直线与直线互相平行,则的值为( )A. 4B. C. 5D. 【答案】C【解析】【分析】根据两条存在斜率的直线平行,斜率相等且在纵轴上的截距不相等这一性质,可以求出的值.【详解】直线的斜率为,在纵轴的截距为,因此若直线与直线互相平行,则一定有直线的斜率为,在纵轴的截距不等于,于是有且,解得,故本题选C.【点睛】本题考查了已知两直线平行求参数问题.其时本题也可以运用下列性质解题:若直线与直线平行,则有且.6.已知,则点在直线上的概率为( )A. B. C. D. 【答案】B【解析】【分析】先求出点)的个数,然后求出点在直线上的个数,最后根据古典概型求出概率.【详解】点的个数为,其中点三点在直线上,所以点在直线上的概率为,故本题选B.【点睛】本题考查了古典概型概率的计算公式,考查了数学运算能力.7.甲、乙两人在相同条件下,射击5次,命中环数如下:甲9.89.910.11010.2乙9.410.310.89.79.8根据以上数据估计( )A. 甲比乙的射击技术稳定B. 乙.比甲的射击技术稳定C. 两人没有区别D. 两人区别不大【答案】A【解析】【分析】先计算甲、乙两人射击5次,命中环数的平均数,再计算出各自的方差,根据方差的数值的比较,得出正确的答案.【详解】甲、乙两人射击5次,命中环数的平均数分别为:,甲、乙两人射击5次,命中环数的方差分别为:,因为,所以甲比乙的射击技术稳定,故本题选A.【点睛】本题考查了用方差解决实际问题的能力,考查了方差的统计学意义.8.若为圆的弦的中点,则直线的方程是( )A. B. C. D. 【答案】D【解析】【分析】圆的圆心为O,求出圆心坐标,利用垂径定理,可以得到,求出直线的斜率,利用两直线垂直斜率关系可以求出直线的斜率,利用点斜式写出直线方程,最后化为一般式方程.【详解】设圆的圆心为O,坐标为(1,0),根据圆的垂径定理可知:,因为,所以,因此直线的方程为,故本题选D.【点睛】本题考查了圆的垂径定理、两直线垂直斜率的关系,考查了斜率公式.9.圆心为的圆与圆相外切,则圆的方程为( )A. B. C. D. 【答案】A【解析】【分析】求出圆的圆心坐标和半径,利用两圆相外切关系,可以求出圆的半径,求出圆的标准方程,最后化为一般式方程.【详解】设的圆心为A,半径为r,圆C的半径为R,,所以圆心A坐标为,半径r为3,圆心距为,因为两圆相外切,所以有,故圆的标准方程为: ,故本题选A.【点睛】本题考查了圆与圆相外切的性质,考查了已知圆的方程求圆心坐标和半径,考查了数学运算能力.10.将两个长、宽、高分别为5,4,3的长方体垒在一起,使其中两个面完全重合,组成一个大长方体,则大长方体的外接球表面积的最大值为( )A. B. C. D. 【答案】B【解析】【分析】要计算长方体的外接球表面积就是要求出外接球的半径,根据长方体的对角线是外接球的直径这一性质,就可以求出外接球的表面积,分类讨论:(1)长宽的两个面重合;(2)长高的两个面重合;(3)高宽两个面重合,分别计算出新长方体的对角线,然后分别计算出外接球的表面积,最后通过比较即可求出最大值.【详解】(1)当长宽的两个面重合,新的长方体的长为5,宽为4,高为6,对角线长为:,所以大长方体的外接球表面积为;(2)当长高两个面重合,新的长方体的长5,宽为8,高为3,对角线长为:,所以大长方体的外接球表面积为;(3)当宽高两个面重合,新的长方体的长为10,宽为4,高为3,对角线长为:,所以大长方体的外接球表面积为,显然大长方体的外接球表面积的最大值为,故本题选B.【点睛】本题考查了长方体外接球的半径的求法,考查了分类讨论思想,考查了球的表面积计算公式,考查了数学运算能力.11.直线被圆截得的劣弧与优弧的长之比是( )A. B. C. D. 【答案】A【解析】【分析】计算出圆心到直线的距离,根据垂径定理,结合锐角三角函数关系,可以求出劣弧所对的圆心角的度数,根据弧度制的定义,这样就可以求出劣弧与优弧的长之比.【详解】圆心O到直线的距离为:,直线被圆截得的弦为AB, 弦AB所对的圆心角为,弦AB的中点为C,由垂径定理可知:,所以,劣弧与优弧的长之比为:,故本题选A.【点睛】本题考查了圆的垂径定理、点到直线距离公式、弧长公式,考查了数学运算能力.12.已知直线与相交于点,线段是圆的一条动弦,且,则的最小值是( )A. B. C. D. 【答案】D【解析】【分析】由已知的所给的直线,可以判断出直线过定点(3,1),直线过定点(1,3),两直线互相垂直,从而可以得到的轨迹方程,设圆心为M,半径为,作直线,可以求出的值,设圆的半径为,求得的最小值,进而可求出的最小值.【详解】圆的半径为,直线与直线互相垂直,直线过定点(3,1),直线过定点(1,3),所以P点的轨迹为:设圆心为M,半径为作直线,根据垂径定理和勾股定理可得:,如下图所示:的最小值就是在同一条直线上时,即则的最小值为,故本题选D.【点睛】本题考查了直线与圆相交的性质,考查了圆与圆的位置关系,考查了平面向量模的最小值求法,运用平面向量的加法的几何意义是解题的关键.二、填空题.13.空间一点到坐标原点的距离是_.【答案】【解析】【分析】直接运用空间两点间距离公式求解即可.【详解】由空间两点距离公式可得:.【点睛】本题考查了空间两点间距离公式,考查了数学运算能力.14.一个社会调查机构就某地居民收入调查了10000人,并根据所得数据画出了如图所示的频率分布直方图,现要从这10000人中再用分层抽样的方法抽出100人作进一步调查,则月收入在(元)内的应抽出_人.【答案】25【解析】由直方图可得2500,3000)(元)月收入段共有100000.0005500=2500人按分层抽样应抽出人。故答案为:25.15.如图,在正方体中,有以下结论:平面;平面;异面直线与所成的角为.则其中正确结论的序号是_(写出所有正确结论的序号).【答案】【解析】【分析】:利用线面平行的判定定理可以直接判断是正确的结论;:举反例可以判断出该结论是错误的;:可以利用线面垂直的判定定理,得到线面垂直,再利用线面垂直的性质定理可以判断是正确的结论;:可以通过,可以判断出异面直线与所成的角为,即本结论是错误的,最后选出正确的结论序号.【详解】:平面,平面 平面,故本结论是正确的;:在正方形中,显然不垂直,而,所以不互相垂直,要是平面,则必有互相垂直,显然是不可能的,故本结论是错误的;:平面,平面,在正方形中,平面,所以平面,而平面,故,因此本结论是正确的;:因为,所以异面直线与所成的角为,在正方形中,故本结论是错误的,因此正确结论的序号是.【点睛】本题考查了线面平行的判定定理、线面垂直的判定定理、性质定理,考查了异面直线所成的角、线面垂直的性质.16.已知正三角形的边长是2,点为边上的高所在直线上的任意一点,为射线上一点,且.则的取值范围是_【答案】【解析】【分析】以AB所在直线为x轴,以AB的中点为坐标原点,AB的垂线为y轴,建立平面直角坐标系,求出A.C,P,Q的坐标,运用平面向量的坐标表示和性质,求出的表达式,利用判别式法求出的取值范围.【详解】以AB所在的直线为x轴,以AB的中点为坐标原点,AB的垂线为y轴,建立平面直角坐标系,如下图所示:,设,设,可得,由,可得即,令,可得,当时,成立,当时,即,即,所以的取值范围是.【点睛】本题考查了平面向量数量积的性质和运算,考查了平面向量模的取值范围,构造函数,利用判别式法求函数的最值是解题的关键.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.求经过点且分别满足下列条件直线的一般式方程.(1)倾斜角为45;(2)在轴上的截距为5;(3)在第二象限与坐标轴围成的三角形面积为4.【答案】(1)(2)(3)【解析】【分析】(1)利用斜率和倾斜角的关系,可以求出斜率,可以用点斜式写出直线方程,最后化为一般方程;(2)设出直线的斜截式方程,把点代入方程中求出斜率,进而可求出方程,化为一般式方程即可;(3)设出直线的截距式方程,利用面积公式和已知条件,可以求出所设参数,即可求出直线方程,化为一般式即可.【详解】(1)因为直线的倾斜角为45,所以斜率,代入点斜式,即.(2)因为直线在轴上的截距是5,所以设直线方程为:,代入点得,故直线方程为.(3)设所求直线方程为则,即,解之得,所以直线方程为,即.【点睛】本题考查了利用点斜式、截距式、斜截式求直线方程,正确选择方程的形式是解题的关键.18.如图,在直三棱柱中,分别是,的中点.(1)求证:平面;(2)若,求证:平面平面.【答案】(1)详见解析(2) 详见解析【解析】【分析】(1)利用中位线定理可得,从而得证;(2)先证明,从而有平面,进而可得平面平面【详解】(1)因为分别是的中点,所以因为平面,平面,所以平面(2)在直三棱柱中,平面,因为平面,所以因为,且是中点,所以因为,平面,所以平面因为平面,所以平面平面【点睛】垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.19.在中,角,的对边分别为,且.(1)求角的大小;(2)若,的面积为,求边的长.【答案】(1)(2)【解析】【分析】(1)利用正弦定理实现边角转化,逆用两角和的正弦公式,进行化简,最后可求出角的大小;(2)利用面积公式结合,可以求出的值,再利用余弦定理可以求出边的长.【详解】(1)在中,由正弦定理得,故,代入,并两边同除以,得:,即,因为在中,所以,故,又由可得,所以,同样由得:.(2)因为的面积为,所以,又由(1)得:,所以,又,所以,.由余弦定理得:所以.【点睛】本题考查了了正弦定理的应用,考查了面积公式,考查了利用余弦定理求边长,考查了数学运算能力.20.在平面直角坐标系中,已知点与两个定点,的距离之比为.(1)求点的坐标所满足的关系式;(2)求面积的最大值;(3)若恒成立,求实数的取值范围.【答案】(1)(2)3;(3)【解析】【分析】(1)根据题意,结合两点间距离公式,可以得到等式,化简后得到点的坐标所满足的关系式;(2)设是曲线上任一点,求出的表达式,结合的取值范围,可以求出面积的最大值;(3)恒成立,则恒成立. 设,当它与圆相切时,取得最大和最小值,利用点到直线距离公式,可以求出取得最大和最小值,最后可以求出实数的取值范围.【详解】(1)设的坐标是,由,得,化简得.(2)由(1)得,点在以为圆心,为半径的圆上.设是曲线上任一点,则,又,故的最大值为:.(3)由(1)得:圆的方程是若恒成立,则恒成立.设,当它与圆相切时,取得最大和最小值,由得:,故当时,原不等式恒成立.【点睛】本题考查了求点的轨迹方程,考查了直线与圆的位置关系,考查了求三角形面积最大值问题,考查了数学运算能力.21.现需要设计一个仓库,由上下两部分组成,上部的形状是正四棱锥,下部的形状是正四棱柱(如图所示),并要求正四棱柱的高是正四棱锥的高的4倍.(1)若,则仓库的容积是多少?(2)若正四棱锥的侧棱长为,当为多少时,下部的正四棱柱侧面积最大,最大面积是多少?【答案】(1)(2)当为时,下部分正四棱柱侧面积最大,最大面积是.【解析】【分析】(1)直接利用棱锥和棱柱的体积公式求解即可;(2)设,下部分的侧面积为,由已知正四棱柱的高是正四棱锥的高的4倍.可以求出的长,利用正四棱锥的侧棱长,结合勾股定理,可以求出的长,由正方形的性质,可以求出的长,这样可以求出的表达式,利用配方法,可以求出的最大值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 板框式膜分离器主讲缪金伟22课件
- 安全生产台州69课件
- 考研复习-风景园林基础考研试题带答案详解(基础题)
- 风景园林基础考研资料试题及答案详解【网校专用】
- 《风景园林招投标与概预算》试题A附答案详解(巩固)
- 2025年江西省高速公路投资集团有限责任公司招聘笔试备考题库附答案详解(达标题)
- 2024年滨州新能源集团有限责任公司及权属公司公开招聘工作人员递补笔试备考题库附答案详解(b卷)
- 2024年浙江金华科贸职业技术学院单招职业技能测试题库汇编
- 2024年演出经纪人之演出经纪实务真题(黄金题型)
- 2025年K2教育中人工智能个性化学习系统对学生个性化学习资源的整合效果
- 施工重难点分析措施
- 《物流项目运营管理》课件
- 2025年沈阳水务集团招聘笔试参考题库含答案解析
- 丝绸产品市场趋势分析-洞察分析
- 2024年湖南高考政治真题及答案
- 项目管理与工程经济决策知到智慧树章节测试课后答案2024年秋哈尔滨工程大学
- 常见皮肤病诊疗规范
- 【MOOC】生命的教育-浙江大学 中国大学慕课MOOC答案
- 高三英语一轮复习:节日主题的词汇复习 课件
- 中职农林牧渔类宠物养护与经营专业人培方案
- 无创机械通气护理要点
评论
0/150
提交评论