函数定义域,值域求法以及分段函数_第1页
函数定义域,值域求法以及分段函数_第2页
函数定义域,值域求法以及分段函数_第3页
函数定义域,值域求法以及分段函数_第4页
函数定义域,值域求法以及分段函数_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

. (一)函数的概念1函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数(function)记作:y=f(x),xA其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合f(x)| xA 叫做函数的值域(range)注意: “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”; 函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x2 构成函数的三要素:定义域、对应关系和值域3区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示4一次函数、二次函数、反比例函数的定义域和值域讨论(二)映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射(mapping)记作“f:AB”说明:(1)这两个集合有先后顺序,A到B的射与B到A的映射是截然不同的其中f表示具体的对应法则,可以用汉字叙述(2)“都有唯一”什么意思?包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思。1 例题分析:下列哪些对应是从集合A到集合B的映射?(1)A=P | P是数轴上的点,B=R,对应关系f:数轴上的点与它所代表的实数对应;(2)A= P | P是平面直角体系中的点,B=(x,y)| xR,yR,对应关系f:平面直角体系中的点与它的坐标对应;(3)A=三角形,B=x | x是圆,对应关系f:每一个三角形都对应它的内切圆;(4)A=x | x是新华中学的班级,B=x | x是新华中学的学生,对应关系f:每一个班级都对应班里的学生思考:将(3)中的对应关系f改为:每一个圆都对应它的内接三角形;(4)中的对应关系f改为:每一个学生都对应他的班级,那么对应f: BA是从集合B到集合A的映射吗?(三)函数的表示法常用的函数表示法:(1)解析法;(2)图象法;(3)列表法三、典例解析1、定义域问题例1 求下列函数的定义域: ; ; 解:x-2=0,即x=2时,分式无意义,而时,分式有意义,这个函数的定义域是.3x+20,即x-时,根式无意义,而,即时,根式才有意义,这个函数的定义域是|.当,即且时,根式和分式 同时有意义,这个函数的定义域是|且另解:要使函数有意义,必须: 例2 求下列函数的定义域: 解:要使函数有意义,必须: 即: 函数的定义域为: 要使函数有意义,必须: 定义域为: x|要使函数有意义,必须: 函数的定义域为:要使函数有意义,必须: 定义域为: 要使函数有意义,必须: 即 x 定义域为:例3 若函数的定义域是R,求实数a 的取值范围 解:定义域是R,例4 若函数的定义域为-1,1,求函数的定义域解:要使函数有意义,必须:函数的定义域为:例5 已知f(x)的定义域为1,1,求f(2x1)的定义域。分析:法则f要求自变量在1,1内取值,则法则作用在2x1上必也要求2x1在 1,1内取值,即12x11,解出x的取值范围就是复合函数的定义域;或者从位置上思考f(2x1)中2x1与f(x)中的x位置相同,范围也应一样,12x11,解出x的取值范围就是复合函数的定义域。(注意:f(x)中的x与f(2x1)中的x不是同一个x,即它们意义不同。)解:f(x)的定义域为1,1,12x11,解之0x1,f(2x1)的定义域为0,1。例6已知已知f(x)的定义域为1,1,求f(x2)的定义域。答案:1x21 x211x1 练习:设的定义域是-3,求函数的定义域解:要使函数有意义,必须: 得: 0 函数的定域义为:例7已知f(2x1)的定义域为0,1,求f(x)的定义域因为2x1是R上的单调递增函数,因此由2x1, x0,1求得的值域1,1是f(x)的定义域。已知f(3x1)的定义域为1,2),求f(2x+1)的定义域。)(提示:定义域是自变量x的取值范围)练习:已知f(x2)的定义域为1,1,求f(x)的定义域若的定义域是,则函数的定义域是()已知函数的定义域为,函数的定义域为,则()B 2.值域问题利用常见函数的值域来求(直接法)一次函数y=ax+b(a0)的定义域为R,值域为R;反比例函数的定义域为x|x0,值域为y|y0;二次函数的定义域为R,当a0时,值域为;当a0,=,当x0时,则当时,其最小值;当a0)时或最大值(a0)时,再比较的大小决定函数的最大(小)值.若a,b,则a,b是在的单调区间内,只需比较的大小即可决定函数的最大(小)值.注:若给定区间不是闭区间,则可能得不到最大(小)值;当顶点横坐标是字母时,则应根据其对应区间特别是区间两端点的位置关系进行讨论.练习:1、求函数y=3+(23x)的值域解:由算术平方根的性质,知(23x)0, 故3+(23x)3。 函数的值域为.2、求函数 的值域解: 对称轴 例3 求函数y=4x1-3x(x1/3)的值域。解:法一:(单调性法)设f(x)=4x,g(x)= 1-3x ,(x1/3),易知它们在定义域内为增函数,从而y=f(x)+g(x)= 4x1-3x 在定义域为x1/3上也为增函数,而且yf(1/3)+g(1/3)=4/3,因此,所求的函数值域为y|y4/3。小结:利用单调性求函数的值域,是在函数给定的区间上,或求出函数隐含的区间,结合函数的增减性,求出其函数在区间端点的函数值,进而可确定函数的值域。练习:求函数y=3+4-x的值域。(答案:y|y3)法二:换元法例4 求函数 的值域 解:(换元法)设,则 点评:将无理函数或二次型的函数转化为二次函数,通过求出二次函数的最值,从而确定出原函数的值域。这种解题的方法体现换元、化归的思想方法。它的应用十分广泛。练习:求函数y=x-1 x的值域。(答案:y|y3/4例6 求 的值域解法一:(图象法)可化为 如图, 观察得值域解法二:(零点法)画数轴 利用可得。-103练习:的值域呢? ()(三种方法均可)例7 求函数 的值域解:(换元法)设 ,则 原函数可化为10xy 例8求函数 的值域解:(换元法)令,则 由指数函数的单调性知,原函数的值域为 例9 求函数 的值域解:(图象法)如图,值域为 例10 求函数 的值域解法一:(逆求法)解法二:(分离常数法)由 ,可得值域小结:已知分式函数,如果在其自然定义域(代数式自身对变量的要求)内,值域为;如果是条件定义域(对自变量有附加条件),采用部分分式法将原函数化为,用复合函数法来求值域。例11 求函数 的值域011解法一:(逆求法) 小结:如果自变量或含有自变量的整体有确定的范围,可采用逆求法。解法二:(换元法)设 ,则 01练习:y=;(y(-1,1)).例13 函数 的值域解法一:(逆求法) 2解法二:(换元法)设 ,则 例13 求函数的值域解令,则 所以,值域 练习:1 、;解:x0,y11.另外,此题利用基本不等式解更简捷:(或利用对勾函数图像法)2 、0y5.3 、求函数的值域; 解:令0,则,原式可化为,u0,y,函数的值域是(-,.解:令 t=4x-0 得 0x4 在此区间内 (4x-)=4 ,(4x-) =0函数的值域是 y| 0y24、求函数y=|x+1|+|x-2|的值域. 解法1:将函数化为分段函数形式:,画出它的图象(下图),由图象可知,函数的值域是y|y3.解法2:函数y=|x+1|+|x-2|表示数轴上的动点x到两定点-1,2的距离之和,易见y的最小值是3,函数的值域是3,+. 如图 5、求函数的值域解:设 则 t0 x=1-代入得 t0 y43.分段函数分段函数是指自变量在两个或两个以上不同的范围内, 有不同的对应法则的函数, 它是一个函数, 却又常常被学生误认为是几个函数; 它的定义域是各段函数定义域的并集, 其值域也是各段函数值域的并集. 由于它在理解和掌握函数的定义、函数的性质等知识的程度的考察上有较好的作用, 时常在高考试题中“闪亮”登场。1求分段函数的定义域和值域例1求函数的定义域、值域. 【解析】作图, 利用“数形结合”易知的定义域为, 值域为. 2求分段函数的函数值例2已知函数求. 【解析】因为, 所以. 3求分段函数的最值例3求函数的最大值. 【解析】当时, , 当时, , 当时, , 综上有. 4求分段函数的解析式例4在同一平面直角坐标系中, 函数和的图象关于直线对称, 现将的图象沿轴向左平移2个单位, 再沿轴向上平移1个单位, 所得的图象是由两条线段组成的折线(如图所示), 则函数的表达式为( )【解析】当时, , 将其图象沿轴向右平移2个单位, 再沿轴向下平移1个单位, 得解析式为, 所以, 当时, , 将其图象沿轴向右平移2个单位, 再沿轴向下平移1个单位, 得解析式, 所以, 综上可得, 故选A. 9解分段函数的不等式例11设函数, 若, 则得取值范围是( ) 【解析1】首先画出和的大致图像, 易知时, 所对应的的取值范围是. 【解析2】因为, 当时, , 解得, 当时, , 解得, 综上的取值范围是. 故选D. 例

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论