已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Review Explaining the drivers of technological innovation systems: The case of biogas technologies in mature markets Tatiana Nevzorova*, Emrah Karakaya Industrial Economics and Management, KTH Royal Institute of Technology, Stockholm, Sweden a r t i c l e i n f o Article history: Received 3 April 2019 Received in revised form 25 February 2020 Accepted 27 February 2020 Available online 4 March 2020 Handling Editor: Charbel Jose Chiappetta Jabbour Keywords: Technological innovation systems Sustainability transitions System functions System drivers Biogas a b s t r a c t Biogas as an energy carrier can play an important role in low carbon energy transitions. However, in some countries, biogas technologies are just starting to be used, while in others a more mature stage has been reached. Such heterogeneous development raises a basic question: what are the driving forces behind biogas technologies? In order to address this question, we conduct a systematic literature review on seven mature biogas markets: Austria, France, Germany, Italy, Sweden, the Czech Republic and the United Kingdom. As a result, we synthesize our fi ndings under a typology of what we call system drivers e i.e. drivers of technological innovation systems e and conceptually explain their potential links to system functions. Based on the fi ndings from 42 systematically selected publications and some grey literature, we categorize the system drivers under four interrelated groups (1) proaction to challenges, (2) policy support, (3) cooperation and (4) capability of technology. We argue that the notion of system drivers sheds some light on why socio-technical transitions are ahead in particular sectors in certain countries. In doing so, we extend the previous literature on the functions of technological innovation systems, which previously has offered limited explanations on the causal mechanisms behind socio- technical transitions. In addition, we offer some suggestions for policymakers and practitioners who seek to initiate or expand the diffusion of biogas technologies. 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (/licenses/by-nc-nd/4.0/). Contents 1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.Theoretical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.Technological innovation systems and their functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2.What drives technological innovation systems? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.1.Data selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.2.Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.3.Methodological limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4.Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4.1.Proaction to challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4.1.1.Energy security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4.1.2.Climate change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4.1.3.Waste management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4.2.Policy support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4.2.1.Quantity-based policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4.2.2.Price-based policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4.3.Cooperation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4.4.Capability of technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 * Corresponding author. KTH Royal Institute of Technology, Lindstedtsvagen 30, 114 28, Stockholm, Sweden. E-mail address: tatianankth.se (T. Nevzorova). Contents lists available at ScienceDirect Journal of Cleaner Production journal homepage: /10.1016/j.jclepro.2020.120819 0959-6526/ 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (/licenses/by-nc-nd/4.0/). Journal of Cleaner Production 259 (2020) 120819 4.5.Implications for theory: The association between system drivers and system functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4.5.1.Proaction to challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4.5.2.Policy support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4.5.3.Cooperation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4.5.4.Capability of technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5.Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5.1.Implications for policymaking and practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Declaration of competing interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1. Introduction Environmental protection and global warming issues are high on many political agendas and are becoming an urgent problem for modern industry. The Paris Agreement set the objective to reduce greenhouse gas (GHG) emissions and maintain the global average temperature rise below 2 ?C in order to minimize drastic climate change in this century (UNFCCC, 2018). In October 2018, a report issued by the Intergovernmental Panel on Climate Change described the effects and risks of global average temperatures reaching 1.5 ?C and urged immediate changes within incumbent energy systems (IPCC, 2018). Environmental and social issues usually require transitions that affect various sectors. Climate change cuts across many sectors such as energy, industry, trans- port, agriculture and requires changes to technologies, policies, business and even lifestyles. Biogas as an energy carrier is one of the solutions that is expected to reduce GHG emissions from agriculture (e.g. livestock), waste (municipal wastewater, solid waste, landfi ll gas, etc.) and industry (e.g. fossil fuel production) and can be used for heating, electricity production and as vehicle fuel after being upgraded (see e.g. Alexander et al., 2019; Brynolf et al., 2014; Curto and Martn, 2019; Lyng et al., 2018; Winquist et al., 2019). Although biogas production can actually transform a costly problem into a profi table solution (Walekhwa et al., 2009), it has not yet reached its full potential, even in Europe, the most developed biogas market in the world (Scarlat et al., 2018). The literature on sustainability transitions, which attempts to understand different aspects of transformations in existing socio- technical systems towards more sustainable modes of production and consumption (Markard et al., 2012), has studied biogas technologies from different perspectives. In doing so, scholars haveborrowedconceptsfrominstitutionalstructures(e.g. Markard et al., 2016), multi-level perspectives (e.g. Forbord and Hansen, 2020; Sutherland et al., 2015), socio-technical systems (e.g. Lonnqvist et al., 2018; Olsson and Fallde, 2015), business model innovation processes (e.g. Karlsson et al., 2018) and in- dustrial ecology (e.g. Fallde and Eklund, 2015). A key interest in this growing literature has been understanding and assessing the actors, networks and institutions from a systemic perspective. Many scholars have focused on environmental technologies by which the technological innovation system (TIS) perspective has become an important building block of sustainability transitions research (Markard et al., 2012). Based on the case of biogas technologies, several researchers (e.g. Markard et al., 2009; Negro and Hekkert, 2008) have adopted a TIS perspective. As an analytical framework, a key idea in TIS analyses has been to assess the strength of system functions (Jacobsson and Bergek, 2011) and identify blocking and inducement mechanisms and how they are linked to functional patterns (Bergek et al., 2008a, 2008b).Suchassessmentshavebeenoftenfruitfulin understanding the building blocks of the important factors for the development and diffusion of new technologies. However, TIS analysis has sometimes fallen short in providing an in-depth explanation of how and why sustainability transitions may or may not happen (see e.g. the critics of Kern, 2015). This is because, as we argue, very few TIS scholars have acknowledged inducementmechanisms1.However,whatmakesatheory interesting is not only addressing the question of what but also shedding light on the question of how and why certain phe- nomenon occur (see Whetten, 1989; Makadok et al., 2018). In this paper, we aim to shed some light onwhy socio-technical transitions are ahead in particular sectors in some countries. We do this by raising the following research question: what are the driving forces behind biogas technologies? As a method, we choose a systematic literature review approach (Tranfi eld et al., 2003) and we focus on causal mechanisms that induce the diffusion of biogas technologies in the case of seven relatively mature biogas markets in Europe, i.e. Austria, France, Germany, Italy, Sweden, the Czech Republic and the United Kingdom. We specifi cally focus on more mature markets because we believe that system drivers2(i.e. drivers of technological innovation systems) become more evident in the relatively mature phases of the markets. Our analysis is twofold. First, we inductively identify the kind of causal mechanisms that have been the main drivers behind the deployment of biogas technologies in these countries.3 Second, in an abductive manner, we map the links between such causal mechanisms, i.e. system drivers and what transition scholars refer to as technological innovation system functions. Although system drivers are numerous and context-specifi c, we attempt to categorize them under four groups: (1) proaction to challenges, (2) policy support, (3) cooperation and (4) capability of technology. The rest of the paper is structured as follows: Section 2 pro- vides an overview of TIS functions and revisits the concept of system drivers. Section 3 presents the methodological details including data selection and analysis, as well as an outline of the limitations. Section 4 discusses the results of the study in terms of four types of innovation system drivers and how they link to system functions. Section 5 provides conclusions to the article, discusses the policy and practice-related implications and offers some suggestions for future research. 1 See Section 2 for more elaboration. 2 In our study, we use system drivers, system strengths and inducement mechanisms interchangeably. 3 Bergek et al. (2008b) formulate inducement mechanisms as (1) belief in growth potential and (2) R Lundvall,1992; Nelson,1993). TIS can be defi ned as “a dynamic network of agents interacting in a specifi c economic/industrial area under a particular institutional infra- structure and involved in the generation, diffusion, and utilization of technology” (Carlsson and Stankiewicz, 1991, p.93). TIS can be regarded as the “introduction into the economy of new knowledge or new combinations of existing knowledge” in which “innovations are looked upon mainly as the result of interactive learning pro- cesses” (e.g. within fi rms, between different fi rms, fi rms and con- sumers, fi rms and other organisations such as public agencies) (Edquist, 1997, p. 42). A specifi c technological fi eld is the focus of a TIS study (Suurs and Hekkert, 2009a,b) and can cover both emerging and mature technologies (Markard et al., 2016). In the vast literature, the TIS approach has mainly been used in the analysis of emerging technologies (Coenen, 2015; Hanson, 2018; Musiolik and Markard, 2011; Negro et al., 2008; Sixt et al., 2018; Suurs et al., 2010; Vidican et al., 2010). System functions in TIS can be conceptualized as processes that “directly infl uence the development, diffusion and use of a new technology and, thus, the performance of an innovation system” (Bergek et al., 2008b, p. 408). System functions and their in- teractions shed some light on understanding the dynamics of technological change (Suurs and Hekkert, 2009a). Since the clas- sifi cation of TIS functions was originally derived for emerging phases, we take the study by Hekkert et al. (2007) as a starting point and make some adjustments. This leads to the following six system functions: (F1) Entrepreneurial activities. Some authors assume that en- trepreneurs are at the core of TIS (Planko et al., 2017; Suurs, 2009; Suurs and Hekkert, 2009a,b) as they are risk takers (Suurs et al., 2010), conduct the market-oriented experiments that are neces- sary to establishing radical change (Suurs and Hekkert, 2009a,b), transform ideas into business opportunities (Planko et al., 2017) and eventually translate innovations (Suurs, 2009). Entrepreneur- ship plays a key role: “without entrepreneurship there is no inno- vation” (Berkhout et al., 2006, p. 397) in which the TIS will stagnate (Bergek et al., 2008a,b). Entrepreneurs raise user awareness and stimulate changes in user behaviour in order to develop a market for their innovative technology (Planko et al., 2017). They test new technologies and transform innovation ideas into products and services. Entrepreneurial activities may manifest in different forms including commercial projects, contractors, demonstrations and experiments. (F2) Knowledge development and diffusion. Knowledge of a TIS can be developed through desktop, assessment, feasibility studies (Hekkert and Negro, 2009), learnin
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年江西工业职业技术学院单招职业适应性考试模拟试题及答案解析
- 2026年河南林业职业学院单招职业适应性测试模拟试题及答案解析
- 2026年福州工商学院单招职业适应性考试模拟试题及答案解析
- 2026年重庆旅游职业学院单招职业适应性测试模拟试题及答案解析
- 2026年濮阳石油化工职业技术学院单招职业适应性考试模拟试题及答案解析
- 2026年长江工程职业技术学院单招职业适应性测试模拟试题及答案解析
- 2026年重庆交通职业学院单招职业适应性考试模拟试题及答案解析
- 医学科学研究与创新人才培养
- 眼科疾病的诊疗技术发展
- 结节病多系统护理
- 2025至2030丝苗米市场行业发展趋势分析与未来投资战略咨询研究报告
- 2025年陕西国际经贸集团有限公司招聘(31人)笔试备考重点题库及答案解析
- 江苏省南京市联合体(雨花、江宁、浦口区)2024-2025学年七年级上学期期末考试语文试题
- 2025秋国开电大《人力资源管理》形考任务1234参考答案
- 拳击机器人课件
- 2026年电商评价管理策略与产品口碑优化实操手册
- 基于国家智慧教育云平台的农村小学科学实验课创新教学模式实践与反思教学研究课题报告
- 2026年电商活动策划实战培训课件
- 2026年全国烟花爆竹经营单位主要负责人考试题库(含答案)
- (新教材)部编人教版三年级上册语文 第25课 手术台就是阵地 教学课件
- 四川省广安市岳池县2024-2025学年六年级上学期期末英语试题
评论
0/150
提交评论