高考数学总复习 41_第1页
高考数学总复习 41_第2页
免费预览已结束,剩余15页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

此卷只装订不密封班级 姓名 准考证号 考场号 座位号 2020届高三入学调研考试卷理 科 数 学(一)注意事项:1答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。2选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。3非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。4考试结束后,请将本试题卷和答题卡一并上交。一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1已知集合,则的子集个数为( )ABCD2已知复数,则在复平面上对应的点所在象限是( )A第一象限B第二象限C第三象限D第四象限3在等差数列中,若,则( )ABCD4下列函数中,既是奇函数又在定义域内递增的是( )ABCD5中国古代“五行”学说认为:物质分“金、木、水、火、土”五种属性,并认为:“金生水、水生木、木生火、火生土、土生金”从五种不同属性的物质中随机抽取种,则抽到的两种物质不相生的概率为( )ABCD6设是两平面,是两直线下列说法正确的是( )若,则若,则若,则若,则ABCD7下图是一程序框图,若输入的,则输出的值为( )ABCD8函数(其中,)的图象如图所示,为了得到的图象,只需把的图象上所有点( )A向左平移个单位长度B向左平移个单位长度C向右平移个单位长度D向右平移个单位长度9的展开式中项的系数是( )ABCD10太极图被称为“中华第一图”从孔庙大成殿粱柱,到楼观台、三茅宫标记物;从道袍、卦摊、中医、气功、武术到南韩国旗,太极图无不跃居其上这种广为人知的太极图,其形状如阴阳两鱼互抱在一起,因而被称为“阴阳鱼太极图”在如图所示的阴阳鱼图案中,阴影部分可表示为,设点,则的取值范围是( )ABCD11已知双曲线的右焦点为,是双曲线的一条渐近线上关于原点对称的两点,且线段的中点落在另一条渐近线上,则双曲线的离心率为( )ABCD12已知函数,(为实数),若存在实数,使得对任意恒成立,则实数的取值范围是( )ABCD二、填空题:本大题共4小题,每小题5分13平面内不共线的三点,满足,点为线段的中点,若,则 14已知数列中,且,数列的前项和为,则 15已知直线经过抛物线的焦点,与抛物线交于,且,点是弧(为原点)上一动点,以为圆心的圆与直线相切,当圆的面积最大时,圆的标准方程为 16已知正三棱柱的侧面积为,当其外接球的表面积取最小值时,异面直线与所成角的余弦值等于 三、解答题:本大题共6大题,共70分,解答应写出文字说明,证明过程或演算步骤17(12分)在中,角,所对的边分别为,若,(1)求;(2)当时,求的面积18(12分)如图,正三棱柱的所有棱长都是,分别是的中点(1)求证:平面平面;(2)求二面角的余弦值19(12分)已知是椭圆的左、右焦点,圆()与椭圆有且仅有两个交点,点在椭圆上(1)求椭圆的标准方程;(2)过正半轴上一点的直线与圆相切,与椭圆交于点,若,求直线的方程20(12分)随着经济的发展,个人收入的提高,自2019年1月1日起,个人所得税起征点和税率的调整,调整如下:纳税人的工资、薪金所得,以每月全部收入额减除5000元后的余额为应纳税所得额,依照个人所得税税率表,调整前后的计算方法如下表:某税务部门在某公司利用分层抽样方法抽取某月个不同层次员工的税前收入,并制成下面的频数分布表:(1)若某员工月的工资、薪金等税前收入为元时,请计算一下调整后该员工的实际收入比调整前增加了多少?(2)现从收入在及的人群中按分层抽样抽取人,再从中选人作为新纳税法知识宣讲员,用表示抽到作为宣讲员的收入在元的人数,表示抽到作为宣讲员的收入在元的人数,设随机变量,求的分布列与数学期望21(12分)已知函数,(1)若函数有且只有一个零点,求实数的取值范围;(2)若函数对恒成立,求实数的取值范围(是自然对数的底数,)请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分22(10分)【选修4-4:坐标系与参数方程】在直角坐标系中,曲线的参数方程是(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为(1)曲线的普通方程和直线的直角坐标方程;(2)求曲线上的点到直线的距离的取值范围23(10分)【选修4-5:不等式选讲】设函数,(1)当时,求不等式的解集;(2)对任意,恒有,求实数的取值范围62020届高三入学调研考试卷理 科 数 学(一)答 案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1【答案】C【解析】集合,则其子集的个数为个2【答案】D【解析】,在复平面对应的点的坐标为,所在象限是第四象限3【答案】B【解析】为等差数列,设首项为,公差为,由,解得,所以4【答案】A【解析】B中函数非奇非偶,D中函数是偶函数,C中函数是奇函数,但不在定义域内递增,只有A中函数符合题意5【答案】D【解析】从五种不同属性的物质中随机抽取种,共种,而相生的有种,则抽到的两种物质不相生的概率6【答案】D【解析】由平行公理知对,由线面垂直的性质定理知对,由线面垂直及面面平行定理知对,由面面垂直性质定理知对7【答案】C【解析】运行程序框图,;,输出8【答案】B【解析】由题意知,由于,故,所以,由,求得,故,故需将图像上所有点向左平移个单位长度得到9【答案】A【解析】展开式中项的系数是10【答案】C【解析】如图,作直线,当直线上移与圆相切时,取最大值,此时,圆心到直线的距离等于,即,解得,当下移与圆相切时,取最小值,同理,即,所以11【答案】C【解析】如图,由题知,则,点是线段的中点,则,故,则,所以12【答案】A【解析】,则,若,可得,函数为增函数,当时,不满足对任意恒成立;若,由,得,则,当时,当时,若对任意恒成立,则恒成立,若存在实数,使得成立,则,令,则当时,当时,则则实数的取值范围是二、填空题:本大题共4小题,每小题5分13【答案】或【解析】点为线段的中点,解得,14【答案】【解析】因为,所以,因为,所以数列是以为首项,以为公比的等比数列,所以,即,所以15【答案】【解析】,点到直线距离最大时,圆的面积最大,令,解得,即到直线距离最大,此时,所以所求圆的标准方程为16【答案】【解析】设正三棱柱的底面边长为,高为,球的半径为,由题意知,即,底面外接圆半径,由球的截面圆性质知,当且仅当时取等号,将三棱柱补成一四棱柱,如图,知,即为异面直线与所成角或补角,所以三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤17【答案】(1);(2)【解析】,即,则(2),由正弦定理,可得,所以18【答案】(1)证明见解析;(2)【解析】(1),是的中点,平面,平面平面,平面,又在正方形中,分别是,的中点,易证得:,即又,平面,平面,所以平面平面(2)取中点,以,为,轴建立空间直角坐标系,设平面的一个法向量为,则,令,则,设平面的一个法向量为,则,令,则,设二面角的平面角为,观察可知为锐角,故二面角的余弦值为19【答案】(1);(2)【解析】(1)依题意,得,所以,所以椭圆为,将点代入,解得,则,所以椭圆的标准方程为(2)由题意知直线的斜率存在,设斜率为,(),则直线方程为,设,直线与圆相切,则,即,联立直线与椭圆方程,消元得,因为,所以,即,所以,解得,即,所求直线方程为20【答案】(1);(2)见解析【解析】(1)按调整前起征点应缴纳个税为:元,调整后应纳税:元,比较两纳税情况,可知调整后少交个税元,即个人的实际收入增加了元(2)由题意,知组抽取3人,组抽取4人,当时,当或时,当时,所以的所有取值为:,所求分布列为21【答案】(1);(2)【解析】(1),当时,恒成立,所以单调递增,因为,所以有唯一零点,即符合题意;当时,令,解得,列表如下:由表可知,函数在上递减,在上递增(i)当,即时,所以符合题意;(ii)当,即时,因为,故存在,使得,所以不符题意;(iii)当,即时,因为,设,则,所以单调递增,即,所以,所以,故存在,使得,所以不符题意;综上,的取值范围为(2),则,当时,恒成立,所以单调递增,所以,即符合题意;当时,恒成立,所以单调

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论