

全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
商洛市期末统考高二数学(理)试题第卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。1. 已知全集, 集合, , 则集合可以表示为A B C D 2. 若(其中为虚数单位),则等于A B. C. 1 D. 3命题“若,则”的逆命题否命题逆否命题中,真命题的个数是A0 B1 C2 D34等差数列中,已知前15项和则的值为A3 B4 C6 D125.某几何体的三视图如图所示,图中三个正方形的边长均为2,则该几何体的体积为A B C D6.已知=,则展开式中的常数项为 A B C D7已知双曲线的离心率为,则的值为A. B. C. D. 8. 如图给出的是计算的值的程序框图,其中判断框内应填入的是A B C D 9.等比数列an满足a13,21,则A.21 B.42 C.63 D.8410. 在中,若的形状一定是A.等边三角形 B.不含的等腰三角形 C.钝角三角形D.直角三角形11. 在边长为1的正三角形ABC中, 设,则 A. B. C. D.12. ,分别是定义在上的奇函数和偶函数,当时,,且,则不等式的解集是A(,3)(0,3) B(,3)(3,+) C(3,0)(3,+) D(3,0)(0,3) 第卷二、填空题(共4题,每题5分,共20分)13. 观察按下列顺序排列的等式:,猜想第个等式应为_ 14.已知,满足约束条件,若的最小值为,则 15.设函数, 16. 已知是椭圆的两个焦点,为椭圆上的一点,且。若的面积为9,则 .三、解答题(17题21题每题12分,22题10分共70分)17.函数()的最大值为3, 其图像相邻两条对称轴之间的距离为,(1)求函数的解析式;(2)设,则,求的值.18.如图,四棱锥P-ABCD中,底面ABCD为矩形,PA平面ABCD,E为PD的中点.()证明:PB平面AEC;()设二面角D-AE-C为60,AP=1,AD=,求三棱锥E-ACD的体积。19(本小题满分12分)为了解今年某校高三毕业班准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12.()求该校报考飞行员的总人数;()以这所学校的样本数据来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选三人,设X表示体重超过60公斤的学生人数,求X的分布列和数学期望。20.设,分别是椭圆E:+=1(0b1)的左、右焦点,过的直线与E相交于A、B两点,且,成等差数列。()求()若直线的斜率为1,求b的值。21. 已知函数,其中a0()若f(x)在x1处取得极值,求a的值;()求f(x)的单调区间;()若f(x)的最小值为1,求a的取值范围。22.请考生在A,B,C三题中任选一题作答,如果多做,则按所做的第一题记分做答时,用2B铅笔在答题卡上把所选题目对应的标号涂黑A.选修41:几何证明选讲如图所示,为圆的直径,为圆的切线,为切点. ()求证: ; ()若圆的半径为2,求的值.B选修44:坐标系与参数方程极坐标系与直角坐标系有相同的长度单位,以原点为极点,以轴正半轴为极轴.已知直线的参数方程为(为参数),曲线的极坐标方程为.(I)求C的直角坐
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025劳务派遣合同协议书范本
- 护理伦理毕业答辩
- 常见症状护理之头晕护理
- 湖北省武汉市江岸区七校2024-2025学年高一下学期4月期中生物试题 含答案
- 妇科常规护理体系构建
- 2025年低血钾知识试题
- 湖南省湘一名校联盟2024-2025学年高一下学期4月期中地理试题(原卷版)
- 山东省济宁市2025年高考模拟考试历史试题及答案(济宁三模)
- 浙江省衢州市五校联盟2024-2025学年高二下学期期中联考历史试题(含答案)
- 物流和快递合作协议
- 《管理学原理》案例分析
- 河南省驻马店市重点中学2023-2024学年九年级上学期12月月考语文试题(无答案)
- 2023年10月自考00158资产评估试题及答案含评分标准
- 网络优化低PHR高占比提升优化处理案例总结
- 《公路隧道施工技术规范》(3660-2020)【可编辑】
- 2023-2024学年安徽省合肥市七年级下学期期末语文质量检测试题(含答案)
- 2023电动汽车高压配电盒技术条件及测试方法
- 医院陪护服务投标方案(技术标 )
- 电视艺术欣赏-北京师范大学中国大学mooc课后章节答案期末考试题库2023年
- 精益管理之精益生产
- (完整)双控体系管理制度
评论
0/150
提交评论