全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
例1用数学归纳法证明:请读者分析下面的证法:证明:n=1时,左边,右边,左边=右边,等式成立假设n=k时,等式成立,即:那么当n=k+1时,有: 这就是说,当n=k+1时,等式亦成立由、可知,对一切自然数n等式成立评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n=k这一步,当n=k+1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求正确方法是:当n=k+1时这就说明,当n=k+1时,等式亦成立,例2是否存在一个等差数列an,使得对任何自然数n,等式:a1+2a2+3a3+nan=n(n+1)(n+2)都成立,并证明你的结论分析:采用由特殊到一般的思维方法,先令n=1,2,3时找出来an,然后再证明一般性 解:将n=1,2,3分别代入等式得方程组,解得a1=6,a2=9,a3=12,则d=3故存在一个等差数列an=3n+3,当n=1,2,3时,已知等式成立下面用数学归纳法证明存在一个等差数列an=3n+3,对大于3的自然数,等式a1+2a2+3a3+nan=n(n+1)(n+2)都成立因为起始值已证,可证第二步骤 假设n=k时,等式成立,即a1+2a2+3a3+kak=k(k+1)(k+2)那么当n=k+1时, a1+2a2+3a3+kak +(k+1)ak+1= k(k+1)(k+2)+ (k+1)3(k+1)+3=(k+1)(k2+2k+3k+6)=(k+1)(k+2)(k+3)=(k+1)(k+1)+1(k+1)+2这就是说,当n=k+1时,也存在一个等差数列an=3n+3使a1+2a2+3a3+nan=n(n+1)(n+2)成立综合上述,可知存在一个等差数列an=3n+3,对任何自然数n,等式a1+2a2+3a3+nan=n(n+1)(n+2)都成立例3证明不等式 (nN)证明:当n=1时,左边=1,右边=2左边右边,不等式成立假设n=k时,不等式成立,即那么当n=k+1时,这就是说,当n=k+1时,不等式成立由、可知,原不等式对任意自然数n都成立说明:这里要注意,当n=k+1时,要证的目标是,当代入归纳假设后,就是要证明:认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标例4已知数列an满足a1=0,a2=1,当nN时,an+2=an+1+an求证:数列an的第4m+1项(mN)能被3整除分析:本题由an+1=an+1+an求出通项公式是比较困难的,因此可考虑用数学归纳法当m=1时,a4m+1=a5=a4+a3=(a3+a2)+(a2+a1)=a2+a1+a2+a2+a1=3,能被3整除当m=k时,a4k+1能被3整除,那么当n=k+1时,a4(k+1)+1=a4k+5=a4k+4+a4k+3=a4k+3+a4k+2+a4k+2+a4k+1=a4k+2+a4k+1+a4k+2+a4k+2+a4k+1=3a4k+2+2a4k+1由假设a4k+1能被3整除,又3a4k+2能被3整除,故3a4k+2+2a4k+1能被3整除因此,当m=k+1时,a4(k+1)+1也能被3整除由、可知,对一切自然数mN,数列an中的第4m+1项都能被3整除例5n个半圆的圆心在同一条直线l上,这n个半圆每两个都相交,且都在直线l的同侧,问这些半圆被所有的交点最多分成多少段圆弧?分析:设这些半圆最多互相分成f (n)段圆弧,采用由特殊到一般的方法,进行猜想和论证 当n=2时,由图(1)两个半圆交于一点,则分成4段圆弧,故f (2)=4=22当n=3时,由图(2)三个半径交于三点,则分成9段圆弧,故f (3)=9=32由n=4时,由图(3)三个半圆交于6点,则分成16段圆弧,故f (4)=16=42由此猜想满足条件的n个半圆互相分成圆弧段有f (n)=n2用数学归纳法证明如下:当n=2时,上面已证设n=k时,f (k)=k2,那么当n=k+1时,第k+1个半圆与原k个半圆均相交,为获得最多圆弧,任意三个半圆不能交于一点,所以第k+1个半圆把原k个半圆中的每一个半圆中的一段弧分成两段弧,这样就多出k条圆弧;另外原k个半圆把第k+1个半圆分成k+1段,这样又多出了k+1段圆弧 f (k+1)=k2+k+(k+1) =k2+2k+1=(k+1)2 满足条件的k+1个半圆被所有的交点最多分成(k+1)2段圆弧由、可知,满足条件的n个半圆被所有的交点最多分成n2段圆弧
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Unit6 单元重点单词词组语法短语句型专练-2023-2024学年七年级英语上册(人教版)
- 2026年中心供应室服务合同
- 护患沟通的原则与实践技巧
- 山东省聊城市2025-2026学年物理高二第一学期期末检测模拟试题含解析
- 稳派教育2025年物理高一上期末质量跟踪监视模拟试题含解析
- 刺伤足部个案护理
- 山东省六地市部分学校2025-2026学年数学高二第一学期期末学业水平测试试题含解析
- 云南工程职业学院《艺术衍生品设计》2024-2025学年第一学期期末试卷
- 上海大学附中2026届化学高一上期中预测试题含解析
- 阻塞性黄疸护理质量控制与评价
- 2025年简单个人房屋装修合同5篇
- 人工智能通识教程 课件 第12章-提示词工程
- 人教版(2024)三年级全一册信息科技全册教案
- 娱乐经纪人聘用合同6篇
- 矿山边坡稳定性与生态修复的协同治理机制研究
- 拒绝烟酒与毒品的课件
- 企业舆情监测与品牌声誉保护方案
- 产品售后服务保障方案范文
- 集体劳动合同课件
- 江苏省高新技术产品出口现状及对策研究
- 沟槽开挖安全培训内容课件
评论
0/150
提交评论