文档简介
SICE-ICASEInternationalJointConference2006 Oct.18-21,2006inBexco,Busan,Korea ImprovedDesignandControlExperimentsofanUnderwaterElectricManipulator QifengZhang2,AiqunZhang,KuichenYan ShenyangInstituteofAutomation,ChineseAcademyofSciences,Shenyang,China 2GraduateSchooloftheChineseAcademyofSciences,Beijing,China (TelE-mail:zqfW,) Abstract:Autonomous/Semi-autonomousworkingunderwatervehicleisadevelopmenttrendofunderwatervehicles. Thispaperbrieflyanalyzestherequirementsofunderwaterelectricmanipulatortobeequippedonautonomous underwatervehicles,anddesignsathree-functionunderwaterelectricmanipulatortest-bed.Thetest-bedhasthe characteristicsofcompactconfiguration,completefunctionandwithbigmomentoutput.Butexteriorcablelayout increasesthepossibilitytoarisemalfunctionespeciallywhenthemanipulatorworkinginwater.Animproveddesignof themanipulatorwithinnercablelayoutisalsopresentedinthispaper. Basedonthefrequencycharacteristicsoftherotaryjointdrivenmodule,thePIcorrectionisdesignedtocontrolthe shoulderandelbowjointsangularrate.Thentheangleerrorisregardedastheinputofangularratecontrolloopaftera PIDController,andaNon-regressorAdaptiveController,whichhasbeenwidelyadoptedasaneffectivemeansin underwatervehiclecontrol,isalsousedtocontrolthemanipulatorasaselectivemethod.Experimentresults demonstratethegoodeffectofthePIDandtheadaptivecontrollersincontrollingjointangle,andwiththeinnercontrol loop,theNon-regressorAdaptiveControllerismorerobustthanthatwithoutinner-loop,anditisamoreappropriate controllerthanPIDcontrollerespeciallyinprotectingthemanipulatorsmotorsfromsaturatedvoltage. Keywords:underwaterelectricmanipulator;autonomousunderwatervehicles;adaptivecontroller. 1.INTRODUCTION Inrecentyears,underwatervehiclesbecomean increasinginterestofresearchcommunityandindustry. Today,itiscommontousemannedunderwatervehicles toaccomplishmissionsatseabottom,butitisof enormouscostandriskinsuchadangerous environment.Scientistswishtoperformunderwater missionsinacompletelyautonomousway,soone researchfocusofthisfieldisontheautonomous/ semi-autonomousunderwatervehicle-manipulator system.Becauseofenergy,powerandefficiency, underwaterelectricmanipulatorisabsolutelyanecessity forautonomous/semi-autonomousunderwatervehicle- manipulatorsystem.Thedesignofunderwaterelectric manipulatorandcoordinatedcontrolbetweenitand vehicleareimportantjobbeingdonebyseveral institutes.Forexample,theinteractionbetweena one-linkmanipulatorandOTTERAUVisstudiedin Stanforduniversityfrom19951,SAUVIMP2,a semi-autonomousvehiclewitha7-DOFelectric manipulatorisunderdevelopmentattheAutonomous SystemLaboratoryofUniversityofHawaii,a semi-autonomousunderwatervehicleforevaluationof manipulatortechnologyhasbeendevelopedinKorea OceanResearchandDevelopmentInstitute3,andan underwaterelectricmanipulatordrivenbymagnet couplingtobeequippedforTwin-BurgerAUVhasbeen designedbyKyushuInstituteofTechnologywithother Institutes4.Asacomponentofautonomous/semi- autonomousunderwatervehicle-manipulatorsystem, mediumandsmall-sizedunderwaterelectric manipulatorismuchmoredexterousandeasyto producethanhydraulicmanipulator,sousing underwaterelectricmanipulatortoexploitoceanis muchmorepromising. Thethree-functionunderwaterelectricmanipulator 89-950038-5-598560/06/$10C2006ICASE test-beddesignedinthispaperistobeequippedwitha SmallAutonomous-RemotelyOperatedVehicle(SARV), whichisatest-beddesignedbyShenyangInstituteof Automation,theChineseAcademyofSciences.Itisa vehicleforevaluationofbothAUVandROV technologies.Lightworkinginscientificapplication withfiber,visionandmanipulatormoduleisoneofthe importanttechnologiestobestudied. Inthispaper,wefirstgivethedesignofthe manipulatortest-bed,animproveddesignoftherotary moduleisthenpresented,basedonthefrequency characteristicofrotarymodulebeingtested,weadopta PIcontrollertoregulatetheangularrateofthetwo joints,andPID,Non-regressorAdaptiveControllers5 areusedtocontrolthejointangle.Theexperiment resultswiththecontrollersareanalyzedatlast. 2.UNDERWATERELECTRIC MANIPULATORTEST-BEDDESIGN 2.1MechanismDesign AccordingtotheSmallAutonomous-Remotely OperatedVehicle,thethree-functionunderwater manipulatorisdesignedasshowninfigure1.The manipulatorcomposesofaclawandtwoswingjoints. Theclawisasimplebindinymechanismdrivenbyan insidestepmotor.Theshoulderjointandelbowjointare drivenbysamerotarymodule,whichcanprovidemuch moremomentthanthatneededintheworkingstatus beingdesigned.Byexchangingtheinstallationposition ofthejointlink,thearmcanrotateorpivot.Therotary moduleincludesaDCtorque motor,aharmonic-drive reducer,afail-safebrakeandanincrementalrotary encoder.Tocompactthestructureoftherotarymodule andminimizeitsdimensionandweight,thetorque motorandharmonic-drivereducerarecoreparts,and 3089 withtheencoder,theyhavethesamerotaryaxis,the torquesupportpolecanpreventtheencoderbodyfrom rotatingwiththeaxis. linkl link2 soulderjoint rivenmodule elowjointdven awdriven module motor Fig.1Theunderwaterelectricmanipulator. Fig.2Rotaryjointdrivenmodule. 2.2ElectronicDesign TwoPWMservoamplifiers,aMicroStepping ChopperDrivesareselectedtodrivetheDCmotorand stepmotor.ThePWMservoamplifiersarefully protectedagainstover-voltage,over-current,over- heatingandshort-circuitacrossmotor,groundand powerleads,voltageoperatingmodeisusedtodrive DCmotor.Tosatisfytheunderwaterworking environmentandbeinstalledinthevehiclestightly,a micro-computerPC-104ischosenasthecontrollerof thesystemandADT650,theextendedcardofPC-104, isusedasthedatasamplingcard.Thecardcontainsa12 bitA/D,aD/Aconverter,a16bitcounter/timer,a24 linesDigital1O,whichcanaccomplishallwork includingmonitorcurrent,outputvoltage,sample encodersignal,drivestepmotor,controlbrakeand checkwaterproof. 2.3SoftwareDesign TheQNXoperatingsystemandCprogramming languageareappliedtothePC-104.Thefollowingare maincontentsofsoftwaredesign. 1.DCmotorcurrentmonitoring TomonitortheDCmotorstatusandtoprotectthe PWMservoamplifier. 2.DCmotorvoltagecontrol ToregulatetheanalogsignalstoPWMsoasto controltheDCmotorsvoltagesupply. 3.Encodersignalssampling Toreadthecountnumberof82C54counterof ADT650tocalculatetheangularrateofrotaryjoint,and toestimatethedirectionofjointrotatingbytheDigital I/0interfacewiththedirectionsignalofencoder. 4.Stepmotordrive TosendpulsesignalstotheSteppingChopper Drivestocontrolthespeedanddirectionofthestep motor,andtoenablethesignalstobecontrolledby DigitalI/0. 5.Waterproofdetection Todetectthevoltageofdetectingpointsplacedat sealspositionbyDigitalI/0. 6.Rotatingrangelimit Toavoidinterferencebetweenmanipulatoritselfand betweenthevehicleandmanipulator,andtolimitthe rotatingrangeofeachjoint. 7.Controllerdesign Designcontrollertomakethemanipulatorswing accordingtothecommand. 3.ANIMPROVEDDESIGNOFROTARY JOINTDRIVENMODULE Largenumbersofunderwaterexperimentshavebeen doneuptonowandtheexperimentsvalidatethe feasibilityandreliabilityofourdesignasatest-bed.But theexteriorcablelayoutisahiddentroubleweworry about.Toovercometheproblem,aselectiveimproving designoftherotaryjointdrivenmodulewithinnercable layoutismadeasshowninfigure3.Noadditional componentsareaddedtotheimproveddesign. Fig.3Improveddesignofrotaryjointdrivenmodule withinnercablelayout. 4.ANGULARRATECONTROLOF SHOULDERANDELBOWJOINTS 4.1Frequencycharacteristictestingexperiment TheDCmotorsvoltagesupplyrangesfrom-24Vto +24V,andthegainofPWMservoamplifieris4.8.Give inputsignaltoPWMas VoltagePWM=5sinwt(V)(1) Theangularrate(rad/s)ofrotarymoduleshould be 3090 Angle_ratejoint=A(co)sin(ca+qp)(rad/s)(2) DefineL(0)=20A(w)/51asthe magnitude- frequencycharacteristic,bymeasuringA(S)andq withdifferenta;andcalculatingL(S),wegetthe bodediagramofthesystemasshowninfigure4.coj=8 andcw2=30aretwoinflexionofmagnitude-frequency characteristiccurve,mechanismresonanceoccurswhen cw=55and=-1800here,sowecangetatwo-rank transferfunction,whichcanbeusedtoanalyzethe system. G(s)=0.174031 (0.125s+1)(0.033s+i)(3 -120 101010 Fig.4Bodediagramofrotarymodulewithno-load. 4.2ANGULARRATECONTROLANDEXPER- IMENTOFTHETWOJOINTS Onland,themanipulatorswingsintheverticalplane, thesametestingmethodisadoptedtoanalyzethe shoulderandelbowfrequencycharacteristics.Test resultsshowthattheelbowjointfrequency characteristicsareclosetothatoftherotarymodulebut theshoulderjointsisdifferentinsomesort.Stillcol=8 isthefirstinflexionofshoulderjoints magnitude-frequencycharacteristiccurveandco correspondingto=-1800iscloseto50,butthe secondinflexionofshoulderjointsmagnitude- frequencycharacteristiccurveisnotclear,sowith differentelbowjointangle. Tocontroltheangularrateofthemanipulatorjoint, thefirstcontrollerwethinkofisaPIDcontroller.Since derivativeactionrequiresgoodaccelerationfeedback signalthattheencodercantsupply,wedesignthesame PIcontrollerKp(i+is)toanalyzeandcontrastthe twojointsresponse. Givestepsignal ro =0.7(rad/s)as angularrate command.Whent=0,jointangularratea=0,error e=roandtheintegraldoesnotact,thePWMvoltage supply VoltagepwM=KpXrO(4) WechooseKp=4.4atthebeginningandthePWM voltagesupplyis3VandtheDCmotorvoltagesupply is14.4V,whichisoutofthesystemsdeadzoneand doesntexceedthelimitofpowersupply.Theopen looptransferfunctionwithPIcorrectionis C(s)-0.77(1+1/Ts) s(0.125s+l)(T2s+1) whereT2=1/w2,w2,take7=0.125can maximizethefrequencywidthofintermediate frequency6.Thesecularequationofthesystems close-looptransferfunctionwithPIcontrolleris A(s)=Ts2+s+6.16(6) Thecontrolsystemsframeworkisasfigure5. controller manipulatorjoint angularrate Fig.5Frameworkoftheangularratecontrolsystem. Figure6showstheresponsecurveofthetwojoint withPIcontroller.Theelbowjointangleiszerowhen controllingangularrateoftheshoulderjoint.Good resultisobtainedincontrollingelbowjointsangular rate.However,sincethegravitymomentvariestoo much,thePIcontrollerwiththesameparameters doesntactshoulderjointsangularratewell. Figures7and8aretheexperimentcurveofangular ratecontrolofelbowjointandshoulderjoint respectively.Contrastexperimentsbetweenunderwater andonlandarepresented.Resultsshowthatthe responsecurveismuchmoresmoothandofhigh precisionwhenthemanipulatorisinwater. 50 40 30 20 10 angularratecommand(deg/s) -angularrateofshoulderjoint(deg/s) angularrateofelbowjoint(deg/s) l.-I Time(s) 01234567 Fig.6Stepresponseofshoulderandelbowjoint angularratewiththesamePIcontroller. 13 F 1.1 0.9 0.7- 0.5 0.3 01 1 elbowangularratecom underwaterverticalplane -underwaterhorizontalplane ,verticalplaneonland Time(s) 3456 Fig.7Stepresponsecurvesofelbowjointangularrate underdifferentconditions. 13 Fm (10) where f, ando5arepositiveconstants,and ee+e(11) whereaisapositiveconstant. InPIDcontrolexperiments,wefindthatitismuch morerobustandwithhighprecisionwhenwith inner-loop.Onereasonisthatthevoltagedeadzoneof thejointmotorisabout-5V-+5V,soinadaptivecontrol, withandwithoutinner-looparebothexperimented. Whenwithoutinner-loop,tomakethesystemresponse morequickly,+5visaddedtotheoutputofcontroller toovercomethedeadzone.Figure12istheframework ofadaptivecontrolwithinner-loop,andtheinner-loops parametersarethesameasthoseofthePIDcontroller. hX+W ro adaptivemtola controllercOntrlle j it-2imanipulatorJoint angularrate angle Fig.12Frameworkoftheadaptiveanglecontrolsystem withinner-loop. 0.8 0.6 0.4 0.2 -Elbowanlgecommand Elbowanlgeresponse withoutinnerloop -Elbowanlgeresponse withinnerloop Time(s) 02.557.51012.51517.520 5.2ExperimentswithAdaptivecontroller Althoughresultswithhighprecisionisachievedwith PIDcontroller,therealsoexitsaproblemthatthe invariablePIDparameterscantmeetallconditionswell, especiallyinthebeginningofstepresponsewhenthe jointanglewarpisthebiggest,overshootandvoltage saturationwilloccur.Thevariousangle,loadand environmentchangesneedamoreadaptiveandrobust controller. Theadaptivecontrollerexperimentedinthispaperis basedontheadaptivecontrolwithboundestimation developedbyYuh57.Thecontrollawisexpressed Fig.13Stepresponseofelbowjointanglecontrast betweenwithandwithoutinner-loop. Theelbowjointsstepresponseexperimentcurveof adaptivecontrollerisshowninfigure13.Elbowjoint anglescontrolrangeis500inhorizontalplaneof underwater,wehaveresultsasfollows:whenwithsame parametersofadaptivecontroller,itresponsesmore quicklyandwithhigherprecisionintheconditionof withinner-loop.Thecontrolerrorofwithandwithout inner-loopisabout0.25%and0.40orespectivelywhen responsetimeis15s. 3092 A = fiIlillllq)i11,i=11 .5 5.3ExperimentscontrastbetweenPIDandAdaptive controller Asmentionedinabovepart,PIDcontrollerwith invariableparametershasproblemsincontrollingthe manipulator,oneoftheimportantisthatinthe beginningofresponse,voltagesaturationoccursand willdamagetheDCmotor.Thisproblemiswellsolved byadaptivecontroller.Atthesametime,other performancesdontdescend.Theelbowjointangle response,elbowjointangleerrorandmotorcontrol voltage(/24v)curvesofthetwodifferentcontrollersare showninfigure14. angleadaptive 1.2-avoltageaaaptve Erroradlaptive 0.8 06- 0.4- 0.2 I, 0123456 -0.2- langlePID -voltagePID -ErrorPID 4M.Ishitsuka,S.SagaraandK.Ishii,Dynamics AnalysisandResolvedAccelerationControlofan AutonomousUnderwaterVehicleEquippedwitha Manipulator,ProceedingsofUT04,pp.277-280, 2004. 5J.Yuh,J.NieandC.S.G.Lee,ExperimentalStudy onAdaptiveControlofUnderwaterRobots, Proceedingsofthe1999IEEEInternational ConferenceonRobotics&Autmation,Vol.1,No.1, pp.393-398,1999.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 11378-2025金属覆盖层覆盖层厚度测量轮廓仪法
- 2026年中国长城资产管理股份有限公司校园招聘考试笔试备考题库及答案解析
- 2025浙江绍兴市镜湖开发集团有限公司下属国有企业招聘项目制员工6人笔试考试参考题库及答案解析
- 2025陕西三秦环保科技股份有限公司经理层成员市场化选聘工作5人考试笔试模拟试题及答案解析
- 首都医科大学附属北京安贞医院招聘12人笔试考试备考试题及答案解析
- 2025年芜湖经开区公开招聘工作人员8人笔试考试参考题库及答案解析
- 2025华东师范大学开放教育学院教师发展学院校内外招聘1人考试笔试模拟试题及答案解析
- 2025北京大学人事部内设机构负责人招聘考试笔试备考题库及答案解析
- 2025浙江宁波象山县人力资源开发服务有限公司第二期招聘工作人员1人考试笔试参考题库附答案解析
- 2026广东省高州市医疗卫生事业单位赴广东医科大学(东莞校区)现场招聘专业技术人员112人考试笔试模拟试题及答案解析
- 服装风格第哥特时期风格
- 警察职业介绍
- 2023年03月国家药品监督管理局医疗器械技术审评检查大湾区分中心公开招聘员额制人员33人(广东)笔试参考题库含答案解析
- JJG 908-2023汽车侧滑检验台
- 国能生物质发电厂(供热)工程可行性研究报告
- GB/T 3280-2015不锈钢冷轧钢板和钢带
- GB/T 13773.2-2008纺织品织物及其制品的接缝拉伸性能第2部分:抓样法接缝强力的测定
- 二十五项反措继电保护课件
- 8-《天工开物》两则课件
- 风光互补发电系统技术方案
- 武当逍遥剑剑谱及动作要领分解
评论
0/150
提交评论