

全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
如何解答圆锥曲线的应用题李文青解答圆锥曲线的应用问题时,要善于抓住问题的实质,通过建立数学模型,实现应用性问题向数学问题的顺利转化。要注意认真分析数量间的关系,紧扣圆锥曲线概念,充分利用曲线的几何性质,确定正确的问题解决途径,灵活运用解析几何的常用数学方法,求得最终完整的解答。下面举例说明。例1 设有一颗彗星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道的焦点处,当此彗星离地球相距m万千米和万千米时,经过地球和彗星的直线与椭圆的长轴夹角分别为,求该彗星与地球的最近距离。分析 本题的实际意义是求椭圆上一点到焦点的距离,一般的思路为:由直线与椭圆的关系,列方程组解之;或利用定义法运用椭圆的第二定义求解。同时,还要注意结合椭圆的几何意义进行思考。仔细分析题意由椭圆的几何意义可知:只有当该彗星运行到椭圆的较近顶点时,彗星与地球的距离才达到最小值即为,这样就把问题转化为求a,c和。解:建立如图所示直角坐标系,设地球位于焦点F(c,0)处,椭圆的方程为当过地球和彗星的直线与椭圆的长轴夹角为时,由椭圆的几何意义可知,彗星只能满足OFA=(或)。作ABOF于B,则。由椭圆的第二定义可得:两式相减得,即a=2c。代入得因此,评述:(1)在天体运行中,彗星绕恒星运行的轨迹一般都是椭圆,而恒星正是它的一个焦点,该椭圆的两个端点,一个是近地点,另一个则是远地点,这两点到恒星的距离一个是,另一个是。(2)以上给出的解答是建立在椭圆的概念和几何意义之上的,以数学概念为根基充分体现了数形结合的思想。另外,数学应用问题的解决在数学化的过程中也要时刻不忘审题,善于挖掘隐含条件,有意识地训练数学思维的品质。例2 根据我国汽车制造的现实情况,一般卡车高3m,宽1.6m。现要设计横断面为抛物线型的双向二车道的公路隧道,为保障双向行驶安全,交通管理规定汽车进入隧道后必须保持距中线0.4m的距离行驶。已知拱口AB宽恰好是拱高OC的4倍,若拱宽为a m,求能使卡车安全通过时a的最小正整数值。分析 根据问题的实际意义,卡车通过隧道时应以卡车沿着距隧道中线0.4m到2m间的道路行驶为最佳路线,因此,卡车能否安全通过,取决于距隧道中线2m(即在横断面上距拱口中点2m)处隧道的高度是否够3m,据此可通过建立坐标系,确定出抛物线的方程后求得。解:如图,以拱口AB所在直线为x轴,以拱高OC所在直线为y轴建立直角坐标系,由题意可得抛物线的方程为:点A(,0)在抛物线上,得抛物线方程为取x=,代入抛物线方程,得,。由题意知y3,即,而a0,则,解得。使卡车安全通过时a的最小正整数为14。评述:本题的解题过程可归纳为两步:根据实际问题的意义,确定解题途径,得到距拱口中点2m处y的值;由y3通过解不等式,结合问题的实际意义和要求得到a的值,值得注意的是这种思路在与最佳方案有关的应用题中经常用到。例3 某工程要挖一个横断面为半圆的柱形的坑,挖出的土只能沿道路AP或BP运到P处(如图所示)。已知PA=100m,PB=150m,APB=60,试说明怎样运土最省工。分析 首先抽象为数学问题,半圆中的点可分为三类:(1)沿AP到P较近;(2)沿BP到P较近;(3)沿AP、BP到P同样远。显然,第三类点是第一、二类的分界点,设M是分界线上的任意一点,则有。于是|PA|=150100=50。从而发现第三类点M满足性质:点M到点A与到点B的距离之差等于常数50,由双曲线定义知,点M在以A、B为焦点的双曲线的右支上,故问题转化为求此双曲线的方程。解:以AB所在直线为x轴,线段AB的中点为原点建立如图直角坐标系,设M(x,y)是沿AP、BP运土同等距离的点,则在PAB中,由余弦定理得:,且500,b0),解之得点M轨迹是在半圆内的一段双曲线弧。于是运土时将双曲线弧左侧的土沿AP运到P处,右侧的土沿BP运到P处最省工。评述:(1)本题是不等量与等量关系问题,涉及到分类思想,通过建立直角坐标系,利用点的集合性质,构造圆
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合作办园协议书合同
- 设计思维在纺织中的试题及答案
- 云南合同协议书
- 农村公路养护合同协议书
- 协议书 合同 区别
- 购机合同协议书
- 更名合同协议书
- 保姆雇佣住家合同协议书
- 规范合同协议书
- 授课合同协议书
- (二模)贵阳市2025年高三年级适应性考试(二)物理试卷(含答案)
- 合资公司成立可行性研究报告范文
- 2025年中国电子产品租赁行业市场占有率及投资前景预测分析报告
- 2025年中国亮白防蛀固齿牙膏市场调查研究报告
- 上甘岭战役课件
- 黑龙江省齐齐哈尔市普高联谊校2022-2023学年高一下学期语文期末试卷(含答案)
- 名家班主任培训:AI赋能与德育创新
- (二模)2025年深圳市高三年级第二次调研考试物理试卷(含标准答案)
- 公安治安管理培训
- 湖北省武汉市2025届高中毕业生四月调研考试物理试题及答案(武汉四调)
- 珠宝并购策略优化-全面剖析
评论
0/150
提交评论