挖掘数学美激发学习兴趣新课标_第1页
挖掘数学美激发学习兴趣新课标_第2页
免费预览已结束,剩余2页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

挖掘数学美 激发学习兴趣http:/www.DearEDU.com湖南涟源二中邓石鹏美,字典上解释:“好看”“令人满意的”“好”“得意”。数学美应是“数学中能带给人愉悦的东西”。学生学习数学枯燥的一个重要原因是没有体会到“数学美”。不懂得欣赏数学美或缺少欣赏数学美的能力。因此,充分挖掘数学美,对学生进行数学美的教育,有助于学生树立学习的信心,提高学习的兴趣,激发学习潜能,在学习中获得愉悦感。本文从以下几个方面来挖掘、欣赏数学美。一、 数学史的发展美:包括两个方面:(一)数学知识体系的发展美。如数系的发展。引入对数。坐标系的引入。微积分的发展等。(二)众多天才数学家留下的许多有趣的故事,体现了人类的智慧。人们为其折服和心悦。二、简洁美:爱因期坦说过:“美,本质上终究是简单性。”他还认为,只有借助数学,才能达到简单性的美学准则。物理学家爱因期坦的这种美学理论,在数学界,也被多数人所认同。朴素,简单,是其外在形式。只有既朴实清秀,又底蕴深厚,才称得上至美。欧拉给出的公式:V,堪称“简单美”的典范。世间的多面体有多少?没有人能说清楚。但它们的顶点数、棱数、面数,都必须服从欧拉给出的公式,一个如此简单的公式,概括了无数种多面体的共同特性,能不令人惊叹不已?在数学中,像欧拉公式这样形式简洁、内容深刻、作用很大的定理还有许多。比如:圆的周长公式:C=2R勾股定理:直角三角形两直角边的平方和等于斜边平方。正弦定理:的外接圆半径,则数学中绝大部分公式都体现了“形式的简洁性,内容的丰富性”。正如伟大的希而伯特曾说过:“数学中每一步真正的进展都与更有力的工具和更简单的方法的发现密切联系着”。如笛卡尔坐标系的引入。对数符号的使用,复数单位的引入。微积分的出现都体现了数学外在形式更简洁,内容更深厚。三、和谐美:欧拉公式:,曾获得“最美的数学定理”称号。欧拉建立了在他那个时代,数学中最重要的几个常数之间的绝妙的有趣的联系,包容得如此协调、有序。与欧拉公式有关的棣美弗欧拉公式是()。这个公式把人们以为没有什么共同性的两大类函数三角函数与指数函数紧密地结合起来了。对他们的结合,人们始则惊诧,继而赞叹确是“天作之合”,因为,由他们的结合能派生出许多美的,有用的结论来。比如,由公式()得。由这两个公式,可把三角函数的定义域扩展到复数域上去,即考虑“弧度”为复数的“角”。新定义的余弦函数与我们早已熟悉的通常的余弦函数和谐一致。和谐的美,在数学中多得不可胜数。如著名的黄金分割比,即.61803398。在正五边形中,边长与对角线长的比是黄金分割比。黄金分割比在许多艺术作品中、在建筑设计中都有广泛的应用。达芬奇称黄金分割比为“神圣比例”他认为“美感完全建立在各部分之间神圣的比例关系上”。又如:在椭圆:中,记左焦点为F,右顶点为A,短轴上方的端点为B,若该椭圆的离心率为,则ABF。这样的椭圆不妨称之为“优美椭圆”。对双曲线也有“优美双曲线”:的左顶点为A,右焦点为F,B是虚轴的一个端点,且双曲线的离心率为。它也有类似的性质:ABF。数学中的重要思想方法之一:数形结合法更体现了“数”与“形”的和谐美。四、奇异、突变美:全世界有很大影响的两份杂志曾联合邀请全世界的数学家们评选“近50年的最佳数学问题”,其中有一道相当简单的问题:有哪些分数,不合理地把b约去得到,结果却是对的?经过一种简单计算,可以找到四个分数:。这个问题涉及到“运算谬误,结果正确”的歪打正着,在给人惊喜之余,不也展现一种奇异美吗。人造卫星、行星、彗星等由于运动的速度的不同,它们的轨道可能是椭圆、双曲线或抛物线,这几种曲线的定义如下:到定点距离与它到定直线的距离之比是常数的点的轨迹,当时,形成的是椭圆当时,形成的是双曲线当时,形成的是抛物线常数由0.999变为1、变为1.001,相差很小,形成的却是形状、性质完全不同的曲线。而这几种曲线又完全可看作不同的平面截圆锥面所得到的截线。这也体现了哲学中的量变到质变。数学中也温含哲学这不是很美吗。再看下面几个不同的问题,在结论的形式上却完全相同。也很神奇。例1:在DABC中,BAC120,AD是BAC的平分线,若ABx,ACx,AD,则。(如图1)例2、若直线L分别与两坐标轴的正半轴交于点,直线与直线L交点的横坐标为,则。(见图2)例3、设抛物线与直线y=kx+b相交于两点,它们的横坐标分别为,该直线与x轴交点横坐标为,则。(如图3)例4、圆内接正七边形的边长为,长、短对角线长分别为,则。(如图4)(以上四例摘自2004年中学数学第2期江高文“例谈数学的统一美”,证略)yyxllxxAxxxxxoxxxDCBO图1(图2)(图3)(图4)这样神奇的结论在数学中也很多,教师平时多注意总结、积累提高自己的欣赏水平。同时也引导学生多去发现。五、对称美:数学中的对称美有:(一)数和式的对称美,象二项式定理,杨辉三角。(二)图形的对称美。如毕达哥拉斯学派认为,一切空间图形中,最美的是球形;一切平面图形中,最美的是圆形。圆是中心对称圆形圆心是它的对称中心,圆也是轴对称图形任何一条直径都是它的对称轴。(三)数学思想和方法的对称美。如分析法与综合法,直接法与反证法,逻辑思维与逆向思维等。六、统一美:数的概念从自然数、分数、负数、无理数,扩大到复数,经历了无数次坎坷,范围不断扩大了,在数学及其他学科的作用也不断地增大。那么,人们自然想到能否再把复数的概念继续推广。英国数学家哈密顿苦苦思索了15年,没能获得成功。后来,他“被迫作出妥协”,牺牲了复数集中的一条性质,终于发现了四元数,即形为a1+a2i+a3j+a4k (a1 ,a2i ,a3j ,a4k 为实数)的数,其中、如同复数中的虚数单位。若a3 a4 ,则四元数a1+a2i+a3j+a4k 是一般的复数。四元数的研究推动了线性代数的研究,并在此基础上形成了线性结合代数理论。物理学家麦克斯韦利用四元数理论建立了电磁理论。数学的发展是逐步统一的过程。统一的目的也正如希而伯特所说的:“追求更有力的工具和更简单的方法”。七、创新美:数学在不断的创新中得到发展的。数学中还有许多问题,如采用新的思路、新的方法。可使人耳目一新,从中得到美的赏受。例如立体几何中向量法的使用使传统的立体几何更充满生机。经典定理、题型的引伸、拓展。如:长方体对角线的性质1:设长方体中,对角线,则。我们可以联想或创新得出与长方体对角线相关的其它性质:性质2:长方体中,对角线与三条棱AB、AD、所成的角分别为,则 性质3:设长方体中,对角线与三个面AC、所成的角分别为,则 性质4:长方体中,P是空间异于A的任一点,直线AP与直线AB、AD、所成的角分别为,则性质5:长方体外接球的直径就是这个长方体的对角线的长。 性质6:正方体内切球的直径就是这个正方体的棱长。 还可构造有关的性质 性质7:如果锐角满足,那么一定存在一个长方体,它的对角线与三条棱AB、AD、所成的角分别为。平时在学习中经常训练一题多解,让学生赏受创新、成功愉悦之美,能很好地激发学生的学习兴趣。八、应用美:数学理论不管离现实多远,最后总能找到它的实际用途,体现其为人类服务的价值取向。数学不但是其它自然科学的一门工具性学科,同时它还广泛应用于现实生活。数学之美,还可以从更多的角度去审视,数学美的表现形式是多种多样的,从数学内容看,有概念之美、公式之美、体系之美等;从数学的方法及思维看,有简约之美、类比之美、抽象之美、无限之美等;从狭义美学意义上看,有对称之美、和谐之美、奇异之美等。上面只是就某些侧面谈一些看法。而每一侧面的美都不是孤立的,她们是相辅相成、密不可分的。如和谐美中包含统一美,统一美中也包含和谐美。总之古代哲学家、数学家普洛克拉斯说得好:“哪里有数,哪里就有美。”数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论