6.3数学归纳法.ppt_第1页
6.3数学归纳法.ppt_第2页
6.3数学归纳法.ppt_第3页
6.3数学归纳法.ppt_第4页
6.3数学归纳法.ppt_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

选修2-2(湘教版)6.3数学归纳法(第一课时)主讲人:蔡春晖安徽省宿松县九姑中学,数学归纳法是一种证明与自然数有关的数学命题的重要方法。其格式主要有两个步骤、一个结论:(1)验证当n取第一个值n0(如n0=1或2等)时结论正确;验证初始条件(2)假设n=k时结论正确,在假设之下,证明n=k+1时结论也正确;假设推理(3)由(1)、(2)得出结论.点题,找准起点奠基要稳,用上假设递推才真,写明结论才算完整,一、数学归纳法定义:,例:是否存在常数a、b,使得等式:对一切正整数n都成立,并证明你的结论.,解:令n=1,2,并整理得,以下用数学归纳法证明:,(1)当n=1时,由上面解法知结论正确.,(1)数学归纳法证明等式问题:,二、数学归纳法应用举例:,(2)假设当n=k时结论正确,即:,则当n=k+1时,故当n=k+1时,结论也正确.,根据(1)、(2)知,对一切正整数n,结论正确.,(2)数学归纳法证明整除问题:,例:用数学归纳法证明:当n为正偶数时,xn-yn能被x+y整除.,证:(1)当n=2时,x2-y2=(x+y)(x-y),即能被x+y整除,故命题成立.,(2)假设当n=2k时,命题成立,即x2k-y2k能被x+y整除.,则当n=2k+2时,有,都能被x+y整除.,故x2k+2-y2k+2能被x+y整除,即当n=2k+2时命题成立.,由(1)、(2)知原命题对一切正偶数均成立.,分组训练(讨论):1、用数学归纳法证明:如果an是一个等差数列,则an=a1+(n-1)d对于一切nN*都成立。2、用数学归纳法证明1+3+5+(2n1)=n2,1用数学归纳法证明:如果an是一个等差数列,则an=a1+(n-1)d对于一切nN*都成立。,证明:(1)当n=1时,左边=a1,右边=a1+(1-1)d=a1,当n=1时,等式成立,(2)假设当n=k时等式成立,即ak=a1+(k-1)d,则当n=k+1时,ak+1=ak+d=a1+(k-1)d+d=a1+(k+1)-1d,当n=k+1时,等式也成立。,由(1)和(2)知,等式对于任何nN*都成立。,凑假设,结论,从n=k到n=k+1有什么变化,证明:(1)当n=1时左1,右121n=1时,等式成立(2)假设n=k时,等式成立,即1+3+5+(2k1)=k2那么,当n=k+1时左1+3+5+(2k1)2(k+1)-1=k2+2k+1=(k+1)2=右即n=k+1时等式成立由(1)、(2)可知等式对任何nN*都成立,递推基础,递推依据,2.用数学归纳法证明1+3+5+(2n1)=n2,练,习,用数学归纳法证明:,(1),(2)1+2+22+2n-1=2n-1,(3)首项是a1,公比是q的等比数列的通项公式是an=a1qn-1,感悟与收获,(1)本节的中心内容是数学归纳法的应用;(2)归纳法是一种由特殊到一般的推理方法,分为完全归纳法和不完全归纳法二种;(3)由于不完全归纳法中推测所得结论可能不正确,因而必须作出证明,证明可用数学归纳法进行;(4)数学归纳法作为一种证明方法,它的基本思路是递推思想,它的操作步骤必须是二步,其中第二步

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论