已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高二数学立体几何,排列组合二项式定理,概率复习教学内容复习(立体几何,排列组合二项式定理,概率)方法指南一,三维集合的概念和知识结构二、排列、组合和概率概念及知识结构典型例子的分析例1,AO在o,AB是平面的斜线,b是斜脚,C if ABO=,CBO=,ABC=,如果,都是锐角,有()a,角度最小值b,角度最小值c,角度最大d,角度最大分析:选择题目的目的是为了熟悉“最小角度定理”以及线与平面形成的角度、二面角和线与线形成的角度之间的关系。如图所示,ABO=是斜线形成的角度和线与平面形成的角度。如果使用ACBC,三重垂直定理的逆定理,OCBC。AOC(让它成为)是二面角A-BC-O的平面角。图中由直线形成的角是四个:ABC, CAB, OBC和COB,它们正好是两对互补角。这样,就可以证明sinsinABC=sin,即二面角-BC-o与直线与平面形成的角ABO之间的关系。在本主题中,coscos=coa,和,是锐角, (这是最小角度定理)类似地: ,所以是,和三角形中的最大角度,所以选择C。例2:当外切到固定球体的圆锥体总面积达到最小值时,圆锥体总面积与球体面积之比。分析和解决方案:(这个主题实际上是一个综合的主题)如果球体的半径是1,那么S球体是4 。如果圆锥体底面的半径是r,母线长度是l,那么s圆锥体都是=r2 rl注意有两个变量:R和L,所以考虑减少变量的数量。如图所示,让OBO1=,那么SBO1=2因此,S锥是:度球面=2复习:公式(可能的公式)和三角形中的平均不等式在这个例子的解中被使用。如果你不熟悉三角公式,你也可以用下面的方法解决L和R的关系:让周长为c,然后我们就能解出它例3,如正方形ABCD所示,o是交流中点,MN穿过o并平行于AD,正方形沿MN折叠成60二面角。求二面角a-oc-b的切线。分析和解决方法:关键在于使二面角的平面角,如图AMB=60,取MB的中点h,连接AH,在正三角形AMB,ahMB;也 Mn 飞机,mnah AMB,AH平面MBC,h为k处的HKOC,(注意k的位置)连接AK,用三重垂直定理AKOC,AKH为二面角a-oc-b的平面角。设:AM=2,单位为AMB,AH=,单位为平方ABCD(见平面图)tanakh=,在RtAHK中,因此,二面角-的正切值为。综述:由于点K位于二面角A-Mn-C的后面,为了确定它的位置,我们依靠平面图(不折叠),这可以有效地降低运算的复杂性。有一条一个街区的路。如图所示,一个人从a地到c地可以走多少条不同的最短路线?分析与解决方案:该地块为矩形,因此从A到C,必须穿过6条十字路口和3条直路,共9条街道。由于任何最短路线都经过9条街道,因此每条路线都对应一个序列,例如(右、右、右、上、右、上、上、右、右),其中9个不同的位置可以根据该序列的指示在最短的距离内从A到C,只要其中3个位置在上面(其余的是正确的)。因此,这样的路线是总共的。复习:这种问题是不同元素的排列,但这个例子相对简单。学习时应注意基本原则的应用。发展问题:有三个红灯,两个黄灯和四个白光。相同颜色的光被认为是相同的光。它们应该排成一排作为节日彩灯。有多少种不同的安排?(回答:不同的安排)例5:一个袋子里装着2个白色的球,3个黑色的球和4个红色的球,以3个球为准:(1)找出恰好两个球具有相同颜色的概率。(2)找出取出3个不同颜色的球的概率。解决方法:(1)记住“三个球中只有两个白球”作为事件A,记住“三个球中只有两个黑球”是b项,记住“三个球中只有两个白球”作为c项,和a、b、c相互交换(2)“取出的三个球颜色不同”,事件记录为d然后例6:一次考试有10道选择题。每个选择题有4个选项,只有一个选项是正确的。每个问题都有一个可选项目。最有可能有多少正确答案?解决方法:K正确的概率是最高的要求k=2 74k11也就是说,得到正确答案的概率是最高的。同步练习一、设立若干部门1.与两个平面不同的直线相交的两条直线必须是()a、非平行直线b、非相交直线c、非平面直线d、相交直线或平行直线2.如果直线和直二面角的两个面形成的角度分别为和,则 的取值范围为()a、(0、)、B、0、C、(,)D、(0,)3.两个圆锥的母线长度相等。它们的边膨胀图正好适合一个圆,它们的总面积比是1:6,那么它们的底半径比是()a、1:3B、2:3C、3:4D、1:44.平行六面体的每条边的长度是4。如果PA=1,PB=2,PC=3在从顶点p开始的三条边上,那么四面体的体积p-ABC就是平行六面体的体积()甲、乙、丙、丁、5.在四面体ABCD中,AB=CD=2,e和f分别是AC和BD的中点,EF=,则AB和CD形成的角为。6.三棱锥的三个侧边相互垂直,Q是底部ABC中的一个点,从Q到三个侧表面的距离分别为4、6、12,则PQ线段较长。7.在RtABC中,c=90,ACm,BC=n,d中的CDAB,如果三角形沿CD折叠成一个直的二面角,则ACB的余弦值为。8.如图所示,矩形ABCD和矩形ABEF是全等的,两个平面互相垂直,m是AB的中点,直线FM和直线BD形成角,然后。9.如图所示,PA平面ABC,BCA=90,AEPB在e,AFPC在f,(1)验证:PB飞机AEF(2)如果AP=AB=2a,当AEF面积达到最大值时,计算二面角-c。第二,代数。10.如果m和n是不大于6的非负整数,那么不同的省略号是()a、42 b、30 c、12 d、611.甲和乙是事件。在以下类别中,最多出现A和B中的一个()甲、乙、丙、丁、甲12、在如此五位数中,任何一个数,那么这个数能被2除或能被3除的整数概率是()甲、乙、丙、丁、13.凸多边形有20条对角线,这些对角线的交点是多边形内部的两个点。14.气象站预测明天晴的概率为0.3,明天晴的概率为0.4。那么明天晴的概率为0。15.A和B是独立事件,P(A)=0.4,P(B)=0.6。分别进行了六个独立的重复实验:(1)AB有3次出现的概率。(2)甲乙有3次出现的概率(结果保留4位有效数字)参考答案一、设立若干部门1、A 2、B 3、D 4、A 5、60、6、14、7、8、提示:2。如图所示,二面角a-Mn-b是直的二面角,abm=,ban=,则ABN,abn=临界条件:ABMN,此时=ab/Mn,此时 =03.如果总线长度为L,2l=2(r1 r2),并且溶液(3r1 2r2) (4r1-r2)=0,r1:r2=1:44.如果平行六面体被假设为立方体,那么V是正的=64。6.很容易知道,P和Q分别是有4、6和12条边的长方体的对角端7.如图所示,如果DA=x,DB=y,则AB=8.如图所示,如果取AD中点n来连接MN和FN,那么FMN是由平面外直线FM和BD形成的角度,假设AB=2,BC=2x,那么AF=2x,AN=x,然后解决方法是x2=2,9、1(2)从上面的问题,我们知道AF面PBC,AEPB,和Fe Pb(三垂线定理的逆定理)AEF是二面角A-P-C的平面角,它的大小是* AP=AB=2a,8756;e是PB的中点,AE=a,然后在RtAEF中,AF=,EF=,当且仅当=45时,取“=”当AEF具有最大面积(a2)时,二面角-Pb-c为45。第二,代数部分10、C11、B12、D13、7014、0.58提示:10,m,n应该取四个数字0,1,2,3中的任意两个()11.“最多a和b中的一个”表示“a不发生或b不发生”=。12.请注意,共有90,000个5位数,其中被2除的概率是p(a)=3,被3除的概率是p(a)=p(a b)=p(a)p(b)-p(ab
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025山东临沂市纪委监委机关所属事业单位选聘工作人员10人笔试考试备考题库及答案解析
- 2025贵州清镇市中医医院医共体分院招聘编制外工作人员考试笔试参考题库附答案解析
- 代理合同合集13篇
- 纵隔肿瘤临床试验气管压迫评估方案
- 儿童教育学笔记
- 2025年陕西省汉中市镇巴县辅警招聘考试题库附答案解析
- 2020年初级会计实务试题2447-图文
- 2025年山东省威海市乳山市辅警招聘考试题库附答案解析
- 2025年陕西省咸阳市彬县辅警招聘考试题库附答案解析
- 2025年牡丹江市宁安市辅警招聘考试题库附答案解析
- 2025年陕西省西安市未央区辅警招聘考试题库附答案解析
- 母子投资合同协议书
- 2025年设备经理岗位招聘面试参考题库及参考答案
- 2025年采购个人年终总结
- 农药安全生产讲课课件
- 实验室消防安全知识培训
- 2025上海市生物医药技术研究院招聘专技人员12人考试笔试参考题库附答案解析
- 消防工程施工进度计划表模板
- LY/T 1184-2011橡胶木锯材
- 2022年上海市精神卫生中心医护人员招聘笔试试题及答案解析
- 纳米材料的力学性能课件
评论
0/150
提交评论