




已阅读5页,还剩56页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1,第一章集合与函数概念,第二章基本初等函数,第三章函数应用,2,图示法,一、知识结构,一、集合的含义与表示,1、集合:把研究对象称为元素,把一些元素组成的总体叫做集合,2、元素与集合的关系:,3、元素的特性:确定性、互异性、无序性,(一)集合的含义,4,(1)确定性:集合中的元素必须是确定的.,1.集合中元素的性质:,(2)互异性:一个给定的集合中的元素是互不相同的.,(3)无序性:集合中的元素是没有先后顺序的.,自然数集(非负整数集):记作N,正整数集:记作N*或N+,整数集:记作Z,有理数集:记作Q,实数集:记作R,2.常用的数集及其记法,(含0),(不含0),ex1.集合A=1,0,x,且x2A,则x,-1,(二)集合的表示,1、列举法:把集合中的元素一一列举出来,并放在内,2、描述法:用文字或公式等描述出元素的特性,并放在x|内,3.图示法Venn图,数轴,二、集合间的基本关系,1、子集:对于两个集合A,B如果集合A中的任何一个元素都是集合B的元素,我们称A为B的子集.若集合中元素有n个,则其子集个数为真子集个数为非空真子集个数为,2、集合相等:,3、空集:规定空集是任何集合的子集,是任何非空集合的真子集,2n,2n-1,2n-2,7,子集:AB任意xAxB.真子集:,ABxA,xB,但存在x0B且x0A.,集合相等:ABAB且BA.,空集:.,性质:A,若A非空,则A.AA.AB,BCAC.,3.集合间的关系:,8,子集、真子集个数:,一般地,集合A含有n个元素,,A的非空真子集个.,则A的子集共有个;,A的真子集共有个;,A的非空子集个;,2n,2n1,2n-1,2n-2,9,1.并集:,2.交集:,3.全集:,一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集.用U表示,4.补集:,三、集合的并集、交集、全集、补集,10,0或2,题型示例,考查集合的含义,11,考查集合之间的关系,12,函数的复习主要抓住两条主线,1、函数的概念及其有关性质。,2、几种初等函数的具体性质。,13,函数,函数知识结构,14,B,C,x1x2x3x4x5,y1y2y3y4y5,y6,A,函数的三要素:定义域,值域,对应法则,A.B是两个非空的数集,如果按照某种对应法则f,对于集合A中的每一个元素x,在集合B中都有唯一的元素y和它对应,这样的对应叫做从A到B的一个函数。,一、函数的概念:,思考:函数值域C与集合B的关系,15,二、映射的概念,设A,B是两个非空的集合,如果按照某种确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y于之对应,那么就称对应f:AB为集合A到集合B的一个映射,映射是函数的一种推广,本质是:任一对唯一,16,函数的定义域:,使函数有意义的x的取值范围。,求定义域的主要依据,1、分式的分母不为零.2、偶次方根的被开方数不小于零.3、零次幂的底数不为零.4、对数函数的真数大于零.5、指、对数函数的底数大于零且不为1.,6、实际问题中函数的定义域,17,(一)函数的定义域,1、具体函数的定义域,18,练习:,19,2、抽象函数的定义域,1)已知函数y=f(x)的定义域是1,3,求f(2x-1)的定义域,2)已知函数y=f(x)的定义域是0,5),求g(x)=f(x-1)-f(x+1)的定义域,3),20,21,一个函数的三要素为:定义域、对应关系和值域,值域是由对应法则和定义域决定的,判断两个函数相等的方法:,1、定义域是否相等(定义域不同的函数,不是相同的函数),2、对应法则是否一致(对应关系不同,两个函数也不同),22,例、下列函数中哪个与函数y=x相等,23,二、函数的表示法,1、解析法2、列表法3、图象法,24,例10求下列函数的解析式,待定系数法,换元法,25,三、函数的性质:单调性,如果对于定义域I内某个区间D上的任意两个自变量的值x1、x2,当x1x2时,都有f(x1)f(x2),那么就说函数f(x)在区间D上是增函数.区间D叫做函数的增区间。,一般地,设函数f(x)的定义域为I:,如果对于定义域I内某个区间D上的任意两个自变量的值x1、x2,当x1x2时,都有f(x1)f(x2),那么就说函数f(x)在区间D上是减函数.,3.(定义法)证明函数单调性的步骤:,26,反比例函数,1、定义域.2、值域,4、图象,k0,k0,a0,r,sQ);(ar)s=ars(a0,r,sQ);(ab)r=arbr(a0,b0,rQ).,指数幂的运算,41,1.对数的运算性质:,(2),(3),如果a0,a1,M0,N0有:,42,指数函数与对数函数,在R上是增函数,在R上是减函数,在(0,+)上是增函数,在(0,+)上是减函数,(1,0),(0,1),单调性相同,(0,1),(0,1),(1,0),(1,0),43,指数函数与对数函数,B,总结:在第一象限,越靠近y轴,底数就越大,44,指数函数与对数函数,若图象C1,C2,C3,C4对应y=logax,y=logbx,y=logcx,y=logdx,则()A.0ab1cdB.0ba1dcC.0dc1baD.0cd1ab,D,规律:在x轴上方图象自左向右底数越来越大!,45,46,在同一平面直角坐标系内作出幂函数y=x,y=x2,y=x3,y=x1/2,y=x-1的图象:,y=x,,y=x2,y=x3,y=x1/2,y=x-1,47,(1)图象都过(0,0)点和(1,1)点;,(2)在第一象限内,函数值随x的增大而增大,即在(0,+)上是增函数。,(1)图象都过(1,1)点;,(2)在第一象限内,函数值随x的增大而减小,即在(0,+)上是减函数。,(3)在第一象限,图象向上与y轴无限接近,向右与x轴无限接近。,48,三、幂函数的性质:,.所有的幂函数在(0,+)都有定义,并且函数图象都通过点(1,1);,幂函数的定义域、奇偶性、单调性,因函数式中的不同而各异.,如果0,则幂函数在(0,+)上为增函数;,2.当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数.,49,对于函数y=f(x),我们把使f(x)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《绩效管理研讨》课件
- 《流行性感冒的护理》课件
- 无人机维护和保养知识试题及答案
- 《绩效考核体系》课件
- 《胆结石的治疗》课件
- 企业实验室安全管理体系构建
- 亲子半日开放活动策划与实施
- Crafting a Movie Review 电影评论写作课件
- 小学一年级美术教学工作总结模版
- 碧桂园爬架培训
- 2024-2029年中国玻璃纤维增强混凝土行业市场现状分析及竞争格局与投资发展研究报告
- 2024年中国人保招聘笔试参考题库附带答案详解
- 2023年-2024年邮储银行大堂经理岗位资格认证考试题库(含答案)
- 绿城江南里资料整理
- SN-T 2696-2010煤灰和焦炭灰成分中主、次元素的测定X射线荧光光谱法
- 工会乒乓球比赛竞赛规程
- qpq处理工艺流程
- 经典美味的手抓饭
- 医疗纠纷预防和处理条例通用课件
- 全套老年人能力评估师考试题库(50题+答案)
- 中职电子商务班级建设方案
评论
0/150
提交评论