四川彭水中学高高三数学第一轮复习讲座三数列_第1页
四川彭水中学高高三数学第一轮复习讲座三数列_第2页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省彭水中学高2007届高三数学第一轮复习讲座三 数列 主讲教师:叶长春 2006.12.17一、数列的定义和基本问题1通项公式:(用函数的观念理解和研究数列,特别注意其定义域的特殊性);2前n项和:;3通项公式与前n项和的关系(是数列的基本问题也是考试的热点):二、等差数列1定义和等价定义:是等差数列;2通项公式:;推广:;3前n项和公式:;4重要性质举例与的等差中项;若,则;特别地:若,则;奇数项,成等差数列,公差为;偶数项,成等差数列,公差为.若有奇数项项,则;设, 则有;当时,有最大值;当时,有最小值.用一次函数理解等差数列的通项公式;用二次函数理解等差数列的前n项和公式.三、等比数列1定义:成等比数列;2通项公式:;推广;3前n项和;(注意对公比的讨论)4重要性质举例与的等比中项G(同号);若,则;特别地:若,则;设, 则有;用指数函数理解等比数列(当时)的通项公式.四、等差数列与等比数列的关系举例1成等差数列成等比数列;2成等比数列成等差数列.五、数列求和方法1等差数列与等比数列;2几种特殊的求和方法(1)裂项相消法;(2)错位相减法:, 其中是等差数列, 是等比数列 记;则,(3)通项分解法:六、递推数列与数列思想1递推数列(1)能根据递推公式写出数列的前几项;(2)常见题型:由,求.解题思路:利用2数学思想(1)迭加累加(等差数列的通项公式的推导方法)若,则;(2)迭乘累乘(等比数列的通项公式的推导方法)若,则;(3)逆序相加(等差数列求和公式的推导方法);(4)错位相减(等比数列求和公式的推导方法).七、典型例题 例1、已知数列an为等差数列,公差d0,其中,恰为等比数列,若k1=1,k2=5,k3=17,求k1+k2+kn。解题思路分析:从寻找新、旧数列的关系着手解:设an首项为a1,公差为d a1,a5,a17成等比数列 a52=a1a17 (a1+4d)2=a1(a1+16d) a1=2d 设等比数列公比为q,则 对项来说,在等差数列中: ;在等比数列 注:本题把k1+k2+kn看成是数列kn的求和问题,着重分析kn的通项公式。这是解决数列问题的一般方法,称为“通项分析法”。例2、设等差数列an的首项a1及公差d都为整数,前n项和为Sn.()若a11=0,S14=98,求数列an的通项公式;()若a16,a110,S1477,求所有可能的数列an的通项公式.解:()由S14=98得2a1+13d=14, 又a11=a1+10d=0, 故解得d=2,a1=20.因此,an的通项公式是an=222n,n=1,2,3()由得 即由+得7d11 即d。 由+得13d1 ;即d-(4)于是d 又dZ,故d=1将代入得10a112. 又a1Z,故a1=11或a1=12.所以,所有可能的数列an的通项公式是:an=12-n和an=13-n,n=1,2,3,例3、记等比数列的前项和为,已知S4=1,S8=17,求的通项公式。解:设等比数列的公比为q,由S4=1,S8=17,知q1,所以得,由(1)、(2)两式得,整理得, q4=16,q=2, 将q=2代入(1)得a1=,所以;将q=2代入(1)得,所以.例4、正数数列an的前n项和为Sn,且,求:(1) 数列an的通项公式;(2)设,数列bn的前n项的和为Bn,求证:Bn.解题思路分析:(1)涉及到an及Sn的递推关系,一般都用an=Sn-Sn-1(n2)消元化归。 4Sn=(an+1)2 4Sn-1=(an-1+1)2(n2) 4(Sn-Sn-1)=(an+1)2-(an-1+1)2 4an=an2-an-12+2an-2an-1整理得:(an-1+an)(an-an-1-2)=0 an0 an-an-1=2 an为公差为2的等差数列在中,令n=1,a1=1 an=2n-1 (2) 注:递推是学好数列的重要思想,例本题由4Sn=(an+1)2推出4Sn-1=(an-1+1)2,它其实就是函数中的变量代换法。在数列中一般用n-1,n+1等去代替n,实际上也就是说已知条件中的递推关系是关于n的恒等式,代换就是对n赋值。例5、已知an是首项为2,公比为的等比数列,Sn为它的前n项和,(1)用Sn表示Sn+1;(2)是否存在自然数c和k,使得成立。 解题思路分析:(1) (2)(*) 式(*) Sk+1Sk 又Sk4 由得:c=2或c=3当c=2时 S1=2 k=1时,cSk不成立,从而式不成立 由SkSk+1得: 当k2时,从而式不成立 当c=3时,S12,S2=3 当k=1,2时,CSk不成立 式不成立 当k3时,从而式不成立综上所述,不存在自然数c,k,使成立例6在m(m2)个不同数的排列P1P2Pn中,若1ijm时PiPj(即前面某数大于后面某数),则称Pi与Pj构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数. 记排列的逆序数为an,如排列21的逆序数,排列321的逆序数.()求a4、a5,并写出an的表达式;()令,证明,n=1,2,解()由已知得, . ()因为,所以 ; 又因为,所以 =. 综上, 例7、已知数列中,在直线y=x上,其中n=1,2,3.()令()求数列()设的前n项和,是否存在实数,使得数列为等差数列?若存在,试求出.若不存在,则说明理由。解:(I)由已知得 又 是以为首项,以为公比的等比数列.(II)由(I)知, 将以上各式相加得: (III)解法一:存在,使数列是等差数列. 数列是等差数列的充要条件是、是常数即 又当且仅当,即时,数列为等差数列.解法二:存在,使数列是等差数列. 由(I)、(II)知, ; 当且仅当时,数列是等差数列.例8、已知数列满足并且为非零参数,(I)若、成等比数列,求参数的值;(II)设,常数且证明解:本小题以数列的递推关系为载体,主要考查等比数列的等比中项及前项和公式、等差数列前项和公式、不等式的性质及证明等基础知识,考查运算能力和推理论证能力。(I)解:由已知且 若、成等比数列,则即而解得(II)证明:设由已知,数列是以为首项,为公比的等比数列,故 则因此,对任意当且时,所以例9、设数列、满足:,(n=1,2,3,),证明为等差数列的充分必要条件是为等差数列且(n=1,2,3,)证明:必要性,设是an公差为d1的等差数列,则bn+1bn=(an+1an+3) (anan+2)= (an+1an) (an+3an+2)= d1 d1=0 所以bnbn+1 ( n=1,2,3,)成立。又cn+1cn=(an+1an)+2 (an+2an+1)+3 (an+3an+2)= d1+2 d1 +3d1 =6d1(常数)( n=1,2,3,)所以数列cn为等差数列。充分性: 设数列cn是公差为d2的等差数列,且bnbn+1 ( n=1,2,3,)cn=an+2an+1+3an+2 cn+2=an+2+2an+3+3an+4 -得cncn+2=(anan+2)+2 (an+1an+3)+3 (an+2an+4)=bn+2bn+1+3bn+2cncn+2=( cncn+1)+( cn+1cn+2)= 2 d2 bn+2bn+1+3bn+2=2 d2 从而有bn+1+2bn+2+3bn+3=2 d2 -得(bn+1bn)+2 (bn+2bn+1)+3 (bn+3bn+2)=0 bn+1bn0, bn+2bn+10 , bn+3bn+20,由得bn+1bn=0 ( n=1,2,3,),由此不妨设bn=d3 ( n=1,2,3,)则anan+2= d3(常数).由此cn=an+2an+1+3an+2= cn=4an+2an+13d3 ;从而cn+1=4an+1+2an+25d3 ,两式相减得cn+1cn=2( an+1an) 2d3;因此(常数) ( n=1,2,3,) ;所以数列an公差等差数列。【解后反思】理解公差d的涵义,能把文字叙述转化为符号关系式.利用递推关系是解决数列的重要方法,要求考生熟练掌握等差数列的定义、通项公式及其由来.同步练习(一) 选择题 1、已知a,b,a+b成等差数列,a,b,ab成等比数列,且0logmab1 B、1m8 D、0m82、设a0,b0,a,x1,x2,b成等差数列,a,y1,y2,b成等比数列,则x1+x2与y1+y2的大小关系是A、x1+x2y1+y2 B、x1+x2y1+y2C、x1+x2y1+y21、 已知Sn是an的前n项和,Sn=Pn(PR,nN+),那么数列anA、 是等比数列 B、当P0时是等比数列C、 当P0,P1时是等比数列 D、不是等比数列2、 an是等比数列,且an0,a2a4+2a3a5+a4a6=25,则a3+a5等于A、5 B、10 C、15 D、203、 已知a,b,c成等差数列,则二次函数y=ax2+2bx+c的图象与x轴交点个数是A、 0 B、1 C、2 D、1或24、 设mN+,log2m的整数部分用F(m)表示,则F(1)+F(2)+F(1024)的值是A、 8204 B、8192 C、9218 D、8021 7、若x的方程x2-x+a=0和x2-x+b=0(ab)的四个根可组成首项为的等差数列,则a+b的值为A、 B、 C、 D、8、 在100以内所有能被3整除但不能被7整除的正整数和是A、1557 B、1473 C、1470 D、1368 9、从材料工地运送电线杆到500m以外的公路,沿公路一侧每隔50m埋栽一根电线杆,已知每次最多只能运3根,要完成运载20根电线杆的任务,最佳方案是使运输车运行A、 11700m B、14700m C、14500m D、14000m 10、已知等差数列an中,|a3|=|a9|,公差d0),nN+满足(nN+),则an为等差数列是bn为等比数列的_条件。14、长方体的三条棱成等比数列,若体积为216cm3,则全面积的最小值是_cm2。15、若不等于1的三个正数a,b,c成等比数列,则(2-logba)(1+logca)=_。(三) 解答题16、已知一个等比数列首项为1,项数是偶数,其奇数项之和为85,偶数项之和为170,求这个数列的公比和项数。17、已知等比数列an的首项为a10,公比q-1(q1),设数列bn的通项bn=an+1+an+2(nN+),数列an,bn的前n项和分别记为An,Bn,试比较An与Bn大小。18、数列an中,a1=8,a4=2且满足an+2=2an+1-an(nN+)(1) 求数列an通项公式;(2) 设Sn=|a1|+|a2|+|an|,求Sn;(3) 设

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论