山东省潍坊市2020届高三数学第三次模拟考试试题 文(含解析)_第1页
山东省潍坊市2020届高三数学第三次模拟考试试题 文(含解析)_第2页
山东省潍坊市2020届高三数学第三次模拟考试试题 文(含解析)_第3页
山东省潍坊市2020届高三数学第三次模拟考试试题 文(含解析)_第4页
山东省潍坊市2020届高三数学第三次模拟考试试题 文(含解析)_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省潍坊市2020届高三第三次高考模拟考试数学(文)试题一、选择题:本大题共12个小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.设集合,则( )A. B. C. D. 【答案】C【解析】分析:由集合和,利用集合的交集的运算,即可得到结果.详解:由集合和,所以 ,故选C.点睛:本题主要考查了集合的交集运算,其中根据题意正确求解集合是解答的关键,着重考查了推理与运算能力.2.若复数满足,则( )A. B. 3 C. 5 D. 25【答案】C【解析】分析:由题意,根据复数的运算,求得,进而求解.详解:由题意,则,所以,故选C.点睛:本题主要考查了复数的运算及复数模的求解,其中根据复数的运算,求解复数是解答的关键,着重考查了推理与运算能力.3.在直角坐标系中,若角的终边经过点,则( )A. B. C. D. 【答案】C【解析】分析:由题意角的终边经过点,即点,利用三角函数的定义及诱导公式,即可求解结果.详解:由题意,角的终边经过点,即点,则,由三角函数的定义和诱导公式得,故选C.点睛:本题主要考查了三角函数的定义和三角函数诱导公式的应用,其中熟记三角函数的定义和三角函数的诱导公式是解答的关键,着重考查了推理与运算能力.4.已知数列的前项和,则( )A. B. C. 16 D. 64【答案】D【解析】分析:由题意数列的前项和为,根据数列中和的关系,分别求解的值,即可得到结果.详解:由题意数列的前项和为,则,所以,故选D.点睛:本题主要考查了数列中前项和和的关系的应用,着重考查了考生的推理与运算能力,试题属于基础题.5.已知双曲线的一条渐近线与直线垂直,则双曲线的离心率为( )A. 2 B. C. D. 【答案】D【解析】分析:由双曲线的一条渐近线与直线垂直,求得,再利用离心率的定义,即可求解曲线的离心率.详解:由题意,直线的斜率为,又由双曲线的一条渐近线与直线垂直,所以,所以,所以双曲线的离心率为,故选D.点睛:本题考查了双曲线的几何性质离心率的求解,求双曲线的离心率(或离心率的取值范围),常见有两种方法:求出 ,代入公式;只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得 (的取值范围)6.已知实数满足,则的最大值为( )A. B. C. D. 0【答案】B【解析】分析:画出约束条件所表示的平面区域,设,化为,则表示直线在轴上的截距,结合图象可知,经过点时,目标函数取得最大值,联立方程组,求得点的坐标,代入即可求解.详解:画出约束条件所表示的平面区域,如图所示,设,化为,则表示直线在轴上的截距,结合图象可知,当直线经过点时,目标函数取得最大值,又由,解得,所以目标函数的最大值为,故选B.点睛:本题主要考查简单线性规划解决此类问题的关键是正确画出不等式组表示的可行域,将目标函数赋予几何意义;求目标函数的最值的一般步骤为:一画二移三求其关键是准确作出可行域,理解目标函数的意义,着重考查数形结合思想方法的应用,以及推理与运算能力.7.已知是空间中两条不同的直线,是两个不同的平面,有以下结论: .其中正确结论的个数是( )A. 0 B. 1 C. 2 D. 3【答案】B【解析】分析:根据直线与平面的位置关系的判定定理和性质定理,即可作出判定得到结论.详解:由题意,对于中,若,则两平面可能是平行的,所以不正确;对于中,若,只有当与相交时,才能得到,所以不正确;对于中,若,根据线面垂直和面面垂直的判定定理,可得,所以是正确的;对于中,若,所以是不正确的,综上可知,正确命题的个数只有一个,故选B.点睛:本题考查线面位置关系的判定与证明,熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直8.直线,则“或”是“”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件 D. 既不充分也不必要条件【答案】B【解析】分析:由两条直线平行,求解,在根据充要条件的判定方法,即可得到结论.详解:由题意,当直线时,满足,解得,所以“或”是“”的必要不充分条件,故选B.点睛:本题主要考查了两直线的位置的判定及应用,以及必要不充分条件的判定,其中正确求解两条直线平行式,实数的值是解答的关键,着重考查了推理与论证能力,试题属于基础题.9.已知,则的大小关系是( )A. B. C. D. 【答案】A【解析】分析:根据幂函数在为单调递增函数,得出,在根据对数函数的性质得,即可得到结论.详解:由幂函数性质,可知幂函数在为单调递增函数,所以,即,又由对数函数的性质可知,所以,即,故选A.点睛:本题主要考查了指数式与对数式的比较大小问题,其中解答中熟练运用幂函数与对数函数的图象与性质是解答的关键,着重考查了推理与运算能力.10.执行如图所示的程序框图,输出的值为( )A. 45 B. 55 C. 66 D. 78【答案】B【解析】分析:根据程序框图的运算功能可知,该程序框图是计算的正整数的和,即可求解结果.详解:执行如图所示的程序框图,根据程序框图的运算功能可知,该程序框图是计算的正整数的和,因为,所以执行程序框图,输出的结果为,故选B.点睛:本题主要考查了循环结构的程序框图的输出问题,其中正确把握循环结构的程序框图的计算功能是解答的关键,着重考查了分析问题和解答问题的能力.11.三棱锥中,平面平面,则三棱锥的外接球的表面积为( )A. B. C. D. 【答案】C【解析】分析:作出组合体的图形,结合图象,得到,在在中,得小圆的半径,再在中,利用勾股定理得到外接球的半径,即可求解外接球的表面积.详解:如图所示,设球心为,三角形所在小圆的圆心为,半径为,所在小圆的圆心为,半径为,因为平面平面,则,即,则平面,平面,又在中,因为,则小圆的半径,在中,即,所以外接球的表面积为,故选C.点睛:本题考查了有关球的组合体问题,以及三棱锥外接球的表面积的计算问题,解答时要认真审题,注意球的性质的合理运用,求解球的组合体问题常用方法有(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)找出球心,利用球的性质,借助勾股定理求解.12.已知函数,若,且 ,则的取值范围为( )A. B. C. D. 【答案】A【解析】分析:作出函数的图象,利用消元法转化为关于的函数,构造函数求得函数的导数,利用导数研究函数的单调性与最值,即可得到结论.详解:作出函数的图象,如图所示,若,且,则当时,得,即,则满足,则,即,则,设,则,当,解得,当,解得,当时,函数取得最小值,当时,;当时,所以,即的取值范围是,故选A.点睛:本题主要考查了分段函数的应用,构造新函数,求解新函数的导数,利用导数研究新函数的单调性和最值是解答本题的关键,着重考查了转化与化归的数学思想方法,以及分析问题和解答问题的能力,试题有一定的难度,属于中档试题.二、填空题(每题4分,满分20分,将答案填在答题纸上)13.已知向量,且,则_【答案】8【解析】 14.数列满足,则等于_.【答案】【解析】分析:由题意,整理得,利用裂项求和即可求解.详解:由题意,则,所以.点睛:本题主要考查了数列的裂项求和,着重考查了分析问题和解答问题的能力,以及推理与运算能力.15.【山东省潍坊市2020届三模】三国时期吴国的数学家赵爽曾创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个全等的直角三角形与中间的小正方形拼成一个大正方形,其中一个直角三角形中较小的锐角满足,现向大正方形内随机投掷一枚飞镖,则飞镖落在小正方形内的概率是_.【答案】【解析】分析:求出,从而求出三角形的三边的关系,分别表示出大正方形和小正方形的面积,利用面积比,即可求解概率.详解:由题意,且,解得,不妨设三角形内的斜边的边长为5,则较小边直角边的边长为,较长直角边的边长为,所以小正方形的边长为1,所以打正方形的面积为,小正方形的面积为,所以满足条件的概率为.点睛:本题主要考查了几何概型及其概率的求解问题,其中解答中利用三角函数的基本关系式,求得大、小正方形的边长,得到大、小正方形的面积是解答的关键,着重考查了分析问题和解答问题的能力.16.设抛物线的焦点为,为抛物线上第一象限内一点,满足,已知为抛物线准线上任一点,当取得最小值时,的外接圆半径为_.【答案】【解析】分析:根据抛物线的定义可知,解得,得,作抛物线的焦点,关于抛物线准线的对称点得,连接交抛物线的准线于点,使得取得最小值,此时点的坐标为,在中,分别应用正、余弦定理,即可求解结果.详解:由抛物线的方程可知,设,又由,根据抛物线的定义可知,解得,代入抛物线的方程,可得,即,作抛物线的焦点,关于抛物线准线的对称点得,连接交抛物线的准线于点,此时能使得取得最小值,此时点的坐标为,在中,由余弦定理得,则,由正弦定理得,所以,即三角形外接圆的半径为.点睛:本题主要考查了抛物线标准方程及其定义的应用,以及正弦定理和余弦定理解三角形问题,其中解答中根据抛物线的定义和直线的对称性,得到点的坐标是解答的关键,着重考查了转化与化归的数学思想方法,以及分析问题和解答问题的能力,试题有一定的难度,属于中档试题.三、解答题 (本大题共6题,共70分解答应写出文字说明、证明过程或演算步骤) 17.已知函数.(1)求的最小正周期;(2)在中,角的对边为,若,求中线的长.【答案】(1);(2)【解析】分析:(1)由三角恒等变换的公式化简得,即可利用周期的公式,得到函数的最小正周期;(2)由(1)和,求得,进而求得的值,在中,由正弦定理得,所以,再在中,由余弦定理即可求解的长.详解:(1)函数的最小正周期为.(2)由(1)知,在中,又,在中,由正弦定理,得,在中,由余弦定理得点睛:本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.18.如图所示五面体,四边形是等腰三角形,pm ,点为的中点.(1)在上是否存在一点,使平面?若存在,指出点的位置并给出证明;若不存在,说明理由;(2)求三棱锥的体积.【答案】(1)见解析;(2)【解析】分析:(1)连结,在中,由三角形中位线定理可知,利用线面平行的判定定理,即可证得平面.(2)由题意知,证得,所以,即可求解三棱锥的体积.详解:(1)存在点,为中点.证明如下:连结,在中,由三角形中位线定理可知,又平面,平面,平面.(2)由题意知,平面,平面,平面,又平面,平面平面,四边形是等腰梯形,又,又平面,.三棱锥的体积为.点睛:本题考查线面位置关系的判定与证明,及三棱锥的体积的计算问题,其中熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,对于垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直19.【山东省潍坊市2020届三模】新能源汽车的春天来了!2020年3月5日上午,李克强总理做政府工作报告时表示,将新能源汽车车辆购置税优惠政策再延长三年,自2020年1月1日至2020年12月31日,对购置的新能源汽车免征车辆购置税.某人计划于2020年5月购买一辆某品牌新能源汽车,他从当地该品牌销售网站了解到近五个月实际销量如下表:(1)经分析发现,可用线性回归模型拟合当地该品牌新能源汽车实际销量(万辆)与月份编号之间的相关关系.请用最小二乘法求关于的线性回归方程,并预测2020年5月份当地该品牌新能源汽车的销量;(2)2020年6月12日,中央财政和地方财政将根据新能源汽车的最大续航里程(新能源汽车的最大续航里程是指理论上新能源汽车所装的燃料或电池所能够提供给车跑的最远里程)对购车补贴进行新一轮调整.已知某地拟购买新能源汽车的消费群体十分庞大,某调研机构对其中的200名消费者的购车补贴金额的心理预期值进行了一个抽样调查,得到如下一份频数表:(i)求这200位拟购买新能源汽车的消费者对补贴金额的心理预期值的样本方差及中位数的估计值(同一区间的预期值可用该区间的中点值代替;估计值精确到0.1);(ii)将对补贴金额的心理预期值在(万元)和(万元)的消费者分别定义为“欲望紧缩型”消费者和“欲望膨胀型”消费者,现采用分层抽样的方法从位于这两个区间的30名消费者中随机抽取6名,再从这6人中随机抽取3名进行跟踪调查,求抽出的3人中至少有1名“欲望膨胀型”消费者的概率.参考公式及数据:回归方程,其中,;.【答案】(1),销量约为2万辆;(2)(i)见解析,(ii)0.8.【解析】分析:(1)利用最小二乘法的计算公式,即可求解回归直线方程,作出预测;(2)(i)根据题意,利用平均数和方差的计算公式,即可求解数据的平均数和方差,根据中位数的定义,得到数据的中位数;(ii)设从“欲望膨胀型”消费者中抽取人,从“欲望紧缩型”消费者中抽取人,由分层抽样的定义得,在抽取的6人中,2名“欲望膨胀型”消费者分别记为,4名“欲望紧缩型”消费者分别记为,列举基本事件的总数,利用古典概型及概率的计算公式,即可求解所求的概率.详解:(1)易知,则关于的线性回归方程为,当时,即2020年5月份当地该品牌新能源汽车的销量约为2万辆.(2)(i)根据题意,这200位拟购买新能源汽车的消费者对补贴金额的心里预期值的平均值,样本方差及中位数的估计值分别为:, 中位数的估计值为.(ii)设从“欲望膨胀型”消费者中抽取人,从“欲望紧缩型”消费者中抽取人,由分层抽样的定义可知,解得在抽取的6人中,2名“欲望膨胀型”消费者分别记为,4名“欲望紧缩型”消费者分别记为,则所有的抽样情况如下:共20种其中至少有1名“欲望膨胀型”消费者的情况由16种记事件为“抽出的3人中至少有1名欲望膨胀型消费者”,则点睛:本题主要考查了统计知识的综合应用,其中解答中涉及到回归直线方程的求解和应用,以及数据的数字特征的求解、古典概型及其概率的计算问题,合理准去运算是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力.20.在平面直角坐标系中,点在轴上,点在轴上,且,延长至,且为的中点,记点的轨迹为曲线.(1)求曲线的方程; (2)若直线与圆:相切,且与曲线交于两点,为 u型上一点,当四边形为平行四边形时,求的值.【答案】(1);(2)【解析】分析:(1)设,根据中点公式得,代入圆的方程,即可得到曲线的方程;(2)由与圆相切,求得,用直线与椭圆联立方程组,利用根与系数的关系,求得和,代入椭圆的方程,即可求解结论.详解:(1)设,则有,即,又,得,即曲线的方程为.(2)由与圆相切,得即联立消去整理得,设,在曲线上,得由得,即.点睛:本题主要考查椭圆的标准方程与几何性质、直线与圆锥曲线的位置关系的应用问题,解答此类题目,确定椭圆(圆锥曲线)方程是基础,通过联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系,得到“目标函数”的解析式,确定函数的性质进行求解,此类问题易错点是复杂式子的变形能力不足,导致错漏百出,本题能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.21.已知函数,.(1)讨论函数极值点的个数;(2)若对,不等式成立,求实数的取值范围.【答案】(1)见解析;(2)【解析】分析:(1)求得,令,即,分类讨论,即可得到函数的极值点的个数.(2)由题意等价于,即,分类参数得,设,利用导数求得单调性和最值,即可得到的取值范围.详解:(1),令,即,当时,即时,恒成立,即,此时在单调递增,无极值点,当时,即或,若,设方程的两根为,且,由韦达定理,故,此时单调递增,单调递减,单调递增,故分别为的极大值点和极小值点,因此时,有两个极值点;若,设方程的两根为,且,由韦达定理,故,此时无极值点,综上:当时,有两个极值点,当时,无极值点.(2)等价于,即,因此,设,当时,即,单调递减时,即,单调递增因此为的极小值点,即,故.点睛:本题主要考查导数在函数中的应用,以及不等式的恒成立问题的求解,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论