




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
S. Lee et al.: A Pyroelectric Infrared Sensor-based Indoor Location-Aware System for the Smart HomeA Pyroelectric Infrared Sensor-based Indoor Location-Aware System for the Smart HomeSuk Lee, Member, IEEE, Kyoung Nam Ha, Kyung Chang Lee, Member, IEEEAbstract Smart home is expected to offer various intelligent services by recognizing residents along with their life style and feelings. One of the key issues for realizing the smart home is how to detect the locations of residents. Currently, the research effort is focused on two approaches: terminal-based and non-terminal-based methods. The terminal -based method employs a type of device that should be carried by the resident while the non-terminal-based method requires no such device. This paper presents a novel non-terminal-based approach using an array of pyroelectric infrared sensors (PIR sensors) that can detect residents. The feasibility of the system is evaluated experimentally on a test bed.Index Terms smart home, location-based service, pyroelectric infrared sensor (PIR sensor), location-recognition algorithmI. INTRODUCTIONThere is a growing interest in smart home as a way to offer a convenient, comfortable, and safe residential environment 1, 2. In general, the smart home aims to offer appropriate intelligent services to actively assist in the residents life such as housework, amusement, rest, and sleep. Hence, in order to enhance the residents convenience and safety, devices such as home appliances, multimedia appliances, and internet appliances should be connected via ahome network system, as shown in Fig. 1, and they should be controlled or monitored remotely using a television (TV) or personal digital assistant (PDA) 3, 4. Fig. 1. Architecture of the home network system for smart homeEspecially, attention has been focused on location-based services as a way to offer high-quality intelligent services, while considering human factors such as pattern of living, health, and feelings of a resident 5-7. That is, if the smart home can recognize the residents pattern of living or health, then home appliances should be able to anticipate the residents needs and offer appropriate intelligent service more actively. For example, in a passive service environment, the resident controls the operation of the HVAC (heating, ventilating, and air conditioning) system, while the smart home would control the temperature and humidity of a room according to the residents condition. Various indoor location-aware systems have been developed to recognize the residents location in the smart home or smart office. In general, indoor location-aware systems have been classified into three types according to the measurement technology: triangulation, scene analysis, and proximity methods 8. The triangulation method uses multiple distances from multiple known points. Examples include Active Badges 9, Active Bats 10, and Easy Living 11, which use infrared sensors, ultrasonic sensors, and vision sensors, respectively. The scene analysis method examines a view from a particular vantage point. Representative examples of the scene analysis method are MotionStar 12, which uses a DC magnetic tracker, and RADAR 13, which uses IEEE 802.11 wireless local area network (LAN). Finally, the proximity method measures nearness to a known set of points. An example of the proximity method is Smart Floor 14, which uses pressure sensors.Alternatively, indoor location-aware systems can be classified according to the need for a terminal that should be carried by the resident. Terminal-based methods, such as Active Bats, do not recognize the residents location directly, but perceive the location of a device carried by the resident, such as an infrared transceiver or radio frequency identification (RFID) tag. Therefore, it is impossible to recognize the residents location if he or she is not carrying the device. In contrast, non-terminal methods such as Easy Living and Smart Floor can find the residents location without such devices. However, Easy Living can be regarded to invade the residents privacy while the Smart Floor has difficulty with extendibility and maintenance.This paper presents a non-terminal based location-aware system that uses an array of pyroelectric infrared (PIR) sensors 15, 16. The PIR sensors on the ceiling detect the presence of a resident and are laid out so that detection areas of adjacent sensors overlap. By combining the outputs of multiple PIR sensors, the system is able to locate a resident with a reasonable degree of accuracy. This system has inherent advantage of non-terminal based methods whileavoiding privacy and extendibility, maintenance issues. In order to demonstrate its efficacy, an experimental test bed has been constructed, and the proposed system has been evaluated experimentally under various experimental conditions. This paper is organized into four sections, including this introduction. Section II presents the architecture of the PIR sensor-based indoor location-aware system (PILAS), and the location-recognition algorithm. Section III describes a resident-detection method using PIR sensors, and evaluates the performance of the system under various conditions using an experimental test bed. Finally, a summary and theconclusions are presented in Section IV.II. ARCHITECTURE OF THE PIR SENSOR-BASED INDOORLOCATION-AWARE SYSTEMA. Framework of the smart homeGiven the indoor environment of the smart home, an indoor location-aware system must satisfy the following requirements. First, the location-aware system should be implemented at arelatively low cost because many sensors have to be installed in rooms of different sizes to detect the resident in the smart home. Second, sensor installation must be flexible because the shape of each room is different and there are obstacles such as home appliances and furniture, which prevent the normal operation of sensors. The third requirement is that the sensors for the location-aware system have to be robust to noise, and should not be affected by their surroundings. This is because the smart home can make use of various wireless communication methods such as wireless LAN or radio-frequency (RF) systems, which produce electromagnetic noise, or there may be significant changes in light or temperature that can affect sensor performance. Finally, it is desirable that the systems accuracy is adjustable according to room types.Among many systems that satisfy the requirement, the PIR sensor-based system has not attracted much attention even though the system has several advantages. The PIR sensors,which have been used to turn on a light when it detects human movement, are less expensive than many other sensors. In addition, because PIR sensors detect the infrared wavelengthemitted from humans between 9.410.4 m, they are reasonably robust to their surroundings, in terms of temperature, humidity, and electromagnetic noise. Moreover, it ispossible to control the location accuracy of the system by adjusting the sensing radius of a PIR sensor, and PIR sensors are easily installed on the ceiling, where they are not affected by the structure of a room or any obstacles. Figure 2 shows the framework for the PILAS in a smart home that offers location-based intelligent services to a resident. Within this framework, various devices are connected via a home network system, including PIR sensors, room terminals, a smart home server, and home appliances. Here, each room is regarded as a cell, and the appropriate number of PIR sensors is installed on the ceiling of each cell to provide sufficient location accuracy for the location-based services. Each PIR sensor attempts to detect the resident at a constant period, and transmits its sensing information to a room terminal via the home network system. Fig. 2. Framework of smart home for the PILAS.Consequently, the room terminal recognizes the residents location by integrating the sensor information received from all of the sensors belonging to one cell, and transmits the residents location to the smart home server that controls the home appliances to offer location-based intelligent services to the resident.Within this framework, the smart home server has the following functions. 1) The virtual map generator makes a virtual map of the smart home (generating a virtual map), and writes the location information of the resident, which is received from a room terminal, on the virtual map (writing the residents location). Then, it makes a moving trajectory of the resident by connecting the successive locations of the resident (tracking the residents movement). 2) The home appliance controller transmits control commands to home appliances via the home network system to provide intelligent services to the resident. 3) The moving pattern predictor saves the current movement trajectory of the resident, the current action of home appliances, and parameters reflecting the current home environment such as the time, temperature, humidity, and illumination. After storing sufficient information, it may be possible to offer human-oriented intelligent services in which the home appliances spontaneously provide services to satisfy human needs. For example, if the smart home server “knows” that the resident normally wakes up at 7:00 A.M. and takes a shower, it may be possible to turn on the lamps and some music. In addition, the temperature of the shower water can be set automatically for the resident.S. Lee 等人:基于热释电红外传感器的智能家居室内感应定位系统基于热释电红外传感器的智能家居室内感应定位系统Suk Lee,电机及电子学工程师联合会会员Kyoung Nam Ha, Kyung Chang Lee,电机及电子学工程师联合会会员摘要智能家居,是一种可以通过识别具有不同生活习惯和感觉的住户来提供各种不同的智能服务。而实现这样的功能其中最关键的问题之一就是如何确定住户的位置。目前,研究工作只要集中于两种方法:终端方式和非终端方式。终端方式需要一种住户随身携带的设备,而非终端方式则不需要这样的设备。本文提出一种使用可以探测到住户的热释电红外传感器(红外传感器)的新的非终端方式。该系统的可行性已经通过了测试平台的实验性评估。索引词智能家居,定位服务,热释电红外传感器(红外传感器),定位识别算法I. 简介现在由于人人都想有一个方便,舒适,安全的居住环境,因此大家对于智能家居表现的越来越感兴趣1 2。一般来说,智能家居旨在提供合适的智能服务来积极促进住户更好的生活,比如家务劳动,娱乐,休息和睡眠。因此,为了提高住户的便捷和安全,像家用电器,多媒体设备和互联网设备应通过家庭网络系统连接在一起,如图1所示。并且它们应通过电视或个人数字助理(PDA)来控制或远程监控3 4。图1 智能家居的家庭网络体系结构尤其要注意的是,作为一种提供高质量的智能服务,目标应集中于定位服务,同时考虑人为因素,比如住户的生活方式,健康状况和居住感受57。也就是说,如果智能家居能识别住户的生活方式或健康状况,那么家用电器应该能预见住户的需要,并能更主动的提供适合的智能服务。例如,在一个被动的服务环境下,需要住户控制供热通风与空气调节系统(供暖,通风和空调),而智能家居将根据住户情况自动调节房间的温湿度。智能家居或智能办公室的各种室内感应定位系统的已经研发到能够识别住户的位置。一般来说,室内定位感应系统根据测量技术分为三种类型:三角测量,场景分析和接近方法8。三角测量法是通过多个已知点来计算位置距离。运用三角测量法的例子包括Active Badges9,Active Bats10和Easy Living11,它们分别运用了红外传感器,超声波传感器和视觉传感器来实现的。场景解析法是检测一个场景内的特定着眼点。场景解析法的典型例子是使用直流磁力跟踪器的MotiveStar12,和使用无线局域网络LAN标准IEEE 802,11的RADAR13。接近法则是以一组已知点中最接近的点近似作为定位点。接近法的例子有使用压力传感器的Smart Floor14。另外,室内感应定位系统可以根据是否需要住户随身携带一种设备来分类。终端方式,例如Active Bats,不需要直接找到住户位置,但是可以感应到住户随身携带的设备位置,例如红外收发器或者射频识别技术(RFID)标签。因此,如果住户没有随声携带终端设备,那就不可能找到他。相反的,非终端方式如Easy Living和Smart Floor则不需要这种设备就能找到住户位置。然而,人们认为Easy Living侵犯了住户隐私,Smart Floor则是扩展和维护都比较困难。本文提出一种使用阵列热释电红外(PIR)传感器实现的基于非终端方式的室内感应定位系统15 16。红外传感器固定在天花板上,并使相邻的传感器的感应范围有重叠。当它感应到一名住户时,通过多个红外传感器的综合,能够比较准确的确定住户的位置。该系统不仅具有非终端方式的特有优点,还避免了侵犯隐私,扩展性不佳和维护困难的问题。为了证明其有效性,已经在实验平台上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版天然气运输碳排放交易服务合同
- 2025二手房屋买卖居间合同含物业接管及维修责任条款
- 2025年度车辆购置担保协议合同
- 2025年城市综合体项目房屋拆迁及补偿安置合同样本
- 2025电子支付安全风险评估与合规性审核合同
- 2025年生猪养殖与肉制品深加工企业合作采购合同
- 2025年度物流企业临时仓储管理人员合同
- 2025年二手房交易房屋租赁合同终止补充协议范本
- 2025年新能源车辆运输合同模板
- 2025版水电设施维修保养及应急预案合同范本
- 河流地貌的发育 - 侵蚀地貌
- 离网光伏发电系统详解
- 英语初高中衔接音标
- 广告文案写作(第二版)全套教学课件
- 《国家电网公司电力安全工作规程(配电部分)》
- 金融学黄达ppt课件9.金融市场
- GB/T 3758-2008卡套式管接头用锥密封焊接接管
- GA/T 1105-2013信息安全技术终端接入控制产品安全技术要求
- 一中第一学期高一年级组工作计划
- 外科学课件:泌尿、男生殖系统外科检查
- 建设工程 施工档案数字化方案
评论
0/150
提交评论