2020年普通高等学校招生全国统一考试数学理试题(全国卷含答案)_第1页
2020年普通高等学校招生全国统一考试数学理试题(全国卷含答案)_第2页
2020年普通高等学校招生全国统一考试数学理试题(全国卷含答案)_第3页
2020年普通高等学校招生全国统一考试数学理试题(全国卷含答案)_第4页
2020年普通高等学校招生全国统一考试数学理试题(全国卷含答案)_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2020年普通高等学校招生全国统一考试数学理试题(全国卷,含答案) 本试卷分第卷(选择题)和第卷(非选择题)两部分。第卷1至2页。第卷3至4页。考试结束后,将本试卷和答题卡一并交回。第卷注意事项:1答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。请认真核准条形码上的准考证号、姓名和科目。2每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。3第卷共l2小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。一、选择题(1)复数,为的共轭复数,则(A) (B) (C) (D)【答案】B(2)函数的反函数为(A) (B)(C) (D)【答案】B (3)下面四个条件中,使成立的充分而不必要的条件是(A) (B) (C) (D)【答案】A (4)设为等差数列的前项和,若,公差,则 (A)8 (B)7 (C)6 (D)5【答案】D (5)设函数,将的图像向右平移个单位长度后,所得的图像与原图像重合,则的最小值等于(A) (B) (C) (D)【答案】C (6)已知直二面角,点,,为垂足,,,为垂足若,则到平面的距离等于(A) (B) (C) (D) 1 CABDE【答案】C (7)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则不同的赠送方法共有(A)4种 (B)10种 (C)18种 (D)20种【答案】B (8)曲线在点(0,2)处的切线与直线和围成的三角形的面积为(A) (B) (C) (D)1 【答案】A (9)设是周期为2的奇函数,当时,,则(A) - (B) (C) (D)【答案】A (10)已知抛物线C:的焦点为,直线与交于,两点则(A) (B) (C) (D) 【答案】D (11)已知平面截一球面得圆,过圆心且与成二面角的平面截该球面得圆.若该球面的半径为4,圆的面积为4,则圆的面积为 (A)7 (B)9 (C)11 (D)13【答案】D (12)设向量,满足|,则的最大值等于 (A)2 (B) (c) (D)1【答案】AABCD绝密启用前2020年普通高等学校招生全国统一考试理科数学(必修+选修II)第卷注意事项:1答题前,考生先在答题卡上用直径05毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。请认真核准条形码卜的准考证号、姓名和科目。2第卷共2页,请用直径05毫米黑色墨水签字笔在答题卡上各题的答题区域 内作答,在试题卷上作答无效。3第卷共l0小题,共90分。二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上(注意:在试卷上作答无效)(13)的二项展开式中,的系数与的系数之差为 .【答案】0 (14)已知,则 .【答案】 (15)已知、分别为双曲线: 的左、右焦点,点,点的坐标为(2,0),为的平分线则 .【答案】6 (16)己知点、分别在正方体的棱、上,且,则面与面所成的二面角的正切值等于 .【答案】三解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分l0分)(注意:在试题卷上作答无效)的内角、的对边分别为、.已知, ,求.【命题意图】本题主要考查正弦定理、三角形内角和定理、诱导公式、辅助角公式,考查考生对基础知识、基本技能的掌握情况.(18)(本小题满分l2分)(注意:在试题卷上作答无效) 根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立.(I)求该地1位车主至少购买甲、乙两种保险中的l种的概率;()表示该地的l00位车主中,甲、乙两种保险都不购买的车主数.求的期望. 【命题意图】本题主要考查独立事件的概率、对立事件的概率、互斥事件的概率及二项分布的数学期望,考查考生分析问题、解决问题的能力. (19)(本小题满分l2分)(注意:在试题卷上作答无效)如图,四棱锥中, ,,侧面为等边三角形,.()证明:平面;()求与平面所成角的大小.【命题意图】以四棱锥为载体考查线面垂直证明和线面角的计算,注重与平面几何的综合.解法一:()取中点,连结,则四边形为矩形,连结,则,.又,故,所以为直角. 3分由,得平面,所以.与两条相交直线、都垂直.所以平面. 6分另解:由已知易求得,于是.可知,同理可得,又.所以平面. 6分()由平面知,平面平面.作,垂足为,则平面ABCD,.作,垂足为,则.连结.则.又,故平面,平面平面.9分作,为垂足,则平面.,即到平面的距离为.由于,所以平面,到平面的距离也为.设与平面所成的角为,则,.12分解法二:以为原点,射线为轴的正半轴,建立如图所示的空间直角坐标系.设,则、.又设,则.(),由得,故.由得,又由得,即,故. 3分于是,.故,又,所以平面. 6分()设平面的法向量,则.又,故 9分取得,又.故与平面所成的角为. 12分【点评】立体几何一直以来都是让广大考生又喜又忧的题目.为之而喜是因为只要能建立直角坐标系,基本上可以处理立体几何绝大多数的问题;为之而忧就是对于不规则的图形来讲建系的难度较大,问题不能得到很好的解决.今年的立几问题建系就存在这样的问题,很多考生由于建系问题导致立几的完成情况不是很好.(20)(本小题满分l2分)(注意:在试题卷上作答无效)设数列满足且.求的通项公式;()设.【命题意图】本题主要考查等差数列的定义及其通项公式,裂项相消法求和,不等式的证明,考查考生分析问题、解决问题的能力.【解析】()由题设,即是公差为1的等差数列.又,故.所以 5分# () 由()得 ,12分【点评】2020年高考数学全国卷将数列题由去年的第18题后移,一改往年的将数列结合不等式放缩法问题作为押轴题的命题模式,具有让考生和一线教师重视教材和基础知识、基本方法基本技能,重视两纲的导向作用,也可看出命题人在有意识降低难度和求变的良苦用心.估计以后的高考,对数列的考查主要涉及数列的基本公式、基本性质、递推数列、数列求和、数列极限、简单的数列不等式证明等,这种考查方式还要持续. (21)(本小题满分l2分)(注意:在试题卷上作答无效)已知为坐标原点,为椭圆:在轴正半轴上的焦点,过且斜率为的直线与交与、两点,点满足.(I)证明:点在上;(II)设点关于点的对称点为,证明:、四点在同一圆上.【命题意图】本题考查直线方程、平面向量的坐标运算、点与曲线的位置关系、曲线交点坐标求法及四点共圆的条件。【解析】(I),的方程为,代入并化简得. 2分设,则 由题意得所以点的坐标为.经验证点的坐标满足方程,故点在椭圆上 6分(II)由和题设知,的垂直平分线的方程为. 设的中点为,则,的垂直平分线的方程为. 由、得、的交点为. 9分,故 ,又 , ,所以 ,由此知、四点在以为圆心,为半径的圆上. 12分【点评】本题涉及到平面微向量,有一定的综合性和计算量,完成有难度. 首先出题位置和平时模拟几乎没有变化,都保持全卷倒数第二道题的位置,这点考生非常适应的。相对来讲比较容易,是因为这道题最好特点没有任何的未知参数,我们看这道题椭圆完全给出,直线过了椭圆焦点,并且斜率也给出,平时做题斜率不给出,需要通过一定条件求出来,或者根本求不出来,这道题都给了,反而同学不知道怎么下手,让我求什么不知道,给出马上给向量条件,出了两道证明题,这个跟平时做的不太一样,证明题结论给大家,需要大家严谨推导出来,可能叙述的时候有不严谨的地方。这两问出的非常巧妙,非常涉及解析几何本质的内容,一个证明点在椭圆上的问题,还有一个疑问既然出现四点共圆,这都是平时很少涉及内容。从侧面体现教育深层次的问题,让学生掌握解析几何的本质,而不是把套路解决。其实几年前上海考到解析几何本质问题,最后方法用代数方法研究几何的问题,什么是四点共圆?首先在同一个圆上,首先找到圆心,四个点找圆形不好找,最简单的两个点怎么找?这是平时的知识,怎么找距离相等的点,一定在中垂线,两个中垂线交点必然是圆心,找到圆心再距离四个点距离相等,这就是简单的计算问题。方法确定以后计算量其实比往年少.(22)(本小题满分l2分)(注意:在试题卷上作答无效)(I)设函数,证明:当时,;(II)从编号1到100的100张卡片中每次随即抽取一张,然后放回,用这种方式连续抽取20次,设抽得的20个号码互不相同的概率为.证明:【命题意图】本题为导数、概率与不等式的综合,主要考查导数的应用和利用导数证明不等式.考查考生综合运用知识的能力及分类讨论的思想,考查考生的计算能力及分析问题、解决问题的能力.【解析】(I) 2分当时, ,所以为增函数,又,因此当时,. 5

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论