




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
因数与倍数知识框架一、 约数的概念与最大公约数0被排除在约数与倍数之外1 求最大公约数的方法分解质因数法:先分解质因数,然后把相同的因数连乘起来例如:,所以;短除法:先找出所有共有的约数,然后相乘例如:,所以;辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数用辗转相除法求两个数的最大公约数的步骤如下:先用小的一个数除大的一个数,得第一个余数;再用第一个余数除小的一个数,得第二个余数;又用第二个余数除第一个余数,得第三个余数;这样逐次用后一个余数去除前一个余数,直到余数是0为止那么,最后一个除数就是所求的最大公约数(如果最后的除数是1,那么原来的两个数是互质的)例如,求600和1515的最大公约数:;所以1515和600的最大公约数是152 最大公约数的性质几个数都除以它们的最大公约数,所得的几个商是互质数;几个数的公约数,都是这几个数的最大公约数的约数;几个数都乘以一个自然数,所得的积的最大公约数等于这几个数的最大公约数乘以3 求一组分数的最大公约数先把带分数化成假分数,其他分数不变;求出各个分数的分母的最小公倍数a;求出各个分数的分子的最大公约数b;即为所求二、倍数的概念与最小公倍数1. 求最小公倍数的方法分解质因数的方法;例如:,所以;短除法求最小公倍数;例如: ,所以;2. 最小公倍数的性质两个数的任意公倍数都是它们最小公倍数的倍数两个互质的数的最小公倍数是这两个数的乘积两个数具有倍数关系,则它们的最大公约数是其中较小的数,最小公倍数是较大的数3. 求一组分数的最小公倍数方法步骤先将各个分数化为假分数;求出各个分数分子的最小公倍数;求出各个分数分母的最大公约数;即为所求例如: 注意:两个最简分数的最大公约数不能是整数,最小公倍数可以是整数.例如:三、最大公约数与最小公倍数的常用性质1 两个自然数分别除以它们的最大公约数,所得的商互质。如果为、的最大公约数,且,那么互质,所以、的最小公倍数为,所以最大公约数与最小公倍数有如下一些基本关系:,即两个数的最大公约数与最小公倍数之积等于这两个数的积;最大公约数是、及最小公倍数的约数2 两个数的最大公约和最小公倍的乘积等于这两个数的乘积。即,此性质比较简单,学生比较容易掌握。3 对于任意3个连续的自然数,如果三个连续数的奇偶性为a)奇偶奇,那么这三个数的乘积等于这三个数的最小公倍数例如:,210就是567的最小公倍数b)偶奇偶,那么这三个数的乘积等于这三个数最小公倍数的2倍例如:,而6,7,8的最小公倍数为性质(3)不是一个常见考点,但是也比较有助于学生理解最小公倍数与数字乘积之间的大小关系,即“几个数最小公倍数一定不会比他们的乘积大”。四、求约数个数与所有约数的和1 求任一整数约数的个数一个整数的约数的个数是在对其严格分解质因数后,将每个质因数的指数(次数)加1后所得的乘积。如:1400严格分解质因数之后为,所以它的约数有(3+1)(2+1) (1+1)=432=24个。(包括1和1400本身)约数个数的计算公式是本讲的一个重点和难点,授课时应重点讲解,公式的推导过程是建立在开篇讲过的数字“唯一分解定理”形式基础之上,结合乘法原理推导出来的,不是很复杂,建议给学生推导并要求其掌握。难点在于公式的逆推,有相当一部分常考的偏难题型考察的就是对这个公式的逆用,即先告诉一个数有多少个约数,然后再结合其他几个条件将原数“还原构造”出来,或者是“构造出可能的最值”。2 求任一整数的所有约数的和一个整数的所有约数的和是在对其严格分解质因数后,将它的每个质因数依次从1加至这个质因数的最高次幂求和,然后再将这些得到的和相乘,乘积便是这个合数的所有约数的和。如:,所以21000所有约数的和为此公式没有第一个公式常用,推导过程相对复杂,需要许多步提取公因式,建议帮助学生找规律性的记忆即可。重难点重点:分解质因数法是一个数论重点方法,本讲另一个授课重点在于让孩子对这个方法能够熟练并且灵活运用。难点:在对质数和合数的基本认识,在这个基础之上能够会与之前的一些知识点结合运用。例题精讲【例1】 有三根铁丝,长度分别是120厘米、180厘米和300厘米.现在要把它们截成相等的小段,每根都不能有剩余,每小段最长多少厘米?一共可以截成多少段?【例2】 一次会餐供有三种饮料.餐后统计,三种饮料共用了65瓶;平均每2个人饮用一瓶A饮料,每3人饮用一瓶B饮料,每4人饮用一瓶C饮料.问参加会餐的人数是多少人?【例3】 用辗转相除法求4811和1981的最大公约数。【例4】现有三个自然数,它们的和是1111,这样的三个自然数的公约数中,最大的可以是多少?【例5】两个自然数的和是50,它们的最大公约数是5,试求这两个数的差【例6】一次考试,参加的学生中有得优,得良,得中,其余的得差,已知参加考试的学生不满50人,那么得差的学生有多少人?【例7】数360的约数有多少个?这些约数的和是多少? 【例8】求在到
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年临沂莒南县教体系统部分事业单位公开招聘教师(1名)模拟试卷及参考答案详解1套
- 2025-2032年新能源汽车零部件产业风险预警报告
- 2025年医药企业研发外包(CRO)在临床试验数据分析中的质量控制与优化报告
- 新能源行业2025年安全管理技术创新与安全风险评估方法报告
- 2025贵州黔西南州交通建设发展中心招聘公益性岗位工作人员3人考前自测高频考点模拟试题含答案详解
- 2025年消费与零售市场研究报告:食品饮料零售行业市场细分
- 2025江苏苏州市相城金融控股(集团)有限公司人员招聘考前自测高频考点模拟试题附答案详解(考试直接用)
- 2025年上半年内江市部分学校公开考试招聘教师、部分事业单位公开考试招聘工作人员笔试模拟试卷及1套参考答案详解
- 1.1正数和负数教案-人教版数学七年级上册
- 高中语文人教版选修中国古代诗歌散文选第六单元《项脊轩志》教案2
- 爆破安全培训课件
- 财务管理分析毕业论文
- BSCI验厂一整套文件(含手册、程序文件及表单汇编)
- 抗肿瘤药物安全防护与管理
- 2025年综合类-油漆工考试-高级油漆工考试历年真题摘选带答案(5卷单选100题合辑)
- 超声科医生进修成果汇报
- 国家能源集团陆上风电项目通 用造价指标(2025年)
- 融媒体中心保密方案
- 输油管线牺牲阳极法阴极保护施工方案
- 篮球教学室内课件
- 2025年四川省高考历史试卷(含答案)
评论
0/150
提交评论