




已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.1.2复数的几何意义,知识回顾,1.复数的代数形式:,通常用字母z表示,即,其中称为虚数单位。,2.复数的分类:,非纯虚数,纯虚数,虚数,实数,3.规定:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等,注:,2)一般来说,两个复数只能说相等或不相等,而不能比较大小了.,3.1.2复数的几何意义,在几何上,我们用什么来表示实数?,想一想?,实数的几何意义,类比实数的表示,可以用什么来表示复数?,实数可以用数轴上的点来表示.,实数,数轴上的点,(形),(数),一一对应,回忆,复数的一般形式?,Z=a+bi(a,bR),实部!,虚部!,一个复数由什么唯一确定?,跟我们学过的哪个量有点相似?,复数z=a+bi,有序实数对(a,b),直角坐标系中的点Z(a,b),x,y,o,b,a,Z(a,b),建立了平面直角坐标系来表示复数的平面,x轴-实轴,y轴-虚轴,(数),(形),-复数平面(简称复平面),一一对应,z=a+bi,复数的几何意义(一),O,思考1:复数与点的对应,X,Y,()+i;()+i;()i;()i;();()i;,思考2:点与复数的对应(每个小正方格的边长为1),X,Y,(A)在复平面内,对应于实数的点都在实轴上;(B)在复平面内,对应于纯虚数的点都在虚轴上;(C)在复平面内,实轴上的点所对应的复数都是实数;(D)在复平面内,虚轴上的点所对应的复数都是纯虚数.,例1.辨析:,1下列命题中的假命题是(),D,2“a=0”是“复数a+bi(a,bR)是纯虚数”的().(A)必要不充分条件(B)充分不必要条件(C)充要条件(D)不充分不必要条件,C,3“a=0”是“复数a+bi(a,bR)所对应的点在虚轴上”的().(A)必要不充分条件(B)充分不必要条件(C)充要条件(D)不充分不必要条件,A,例2已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点位于第二象限,求实数m的取值范围.,表示复数的点所在象限的问题,复数的实部与虚部所满足的不等式组的问题,转化,(几何问题),(代数问题),一种重要的数学思想:数形结合思想,变式一:已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点在直线x-2y+4=0上,求实数m的值.,解:复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点是(m2+m-6,m2+m-2),,(m2+m-6)-2(m2+m-2)+4=0,,m=1或m=-2.,复数z=a+bi,直角坐标系中的点Z(a,b),一一对应,平面向量,一一对应,一一对应,复数的几何意义(二),x,y,o,b,a,Z(a,b),z=a+bi,小结,x,O,z=a+bi,y,复数的绝对值,(复数的模),的几何意义:,Z(a,b),对应平面向量的模|,即复数z=a+bi在复平面上对应的点Z(a,b)到原点的距离.,|z|=|,小结,实数绝对值的几何意义:,复数的模其实是实数绝对值概念的推广,x,O,A,a,|a|=|OA|,实数a在数轴上所对应的点A到原点O的距离.,例3求下列复数的模:(1)z1=-5i(2)z2=-3+4i(3)z3=5-5i,(4)z4=1+mi(mR)(5)z5=4a-3ai(a0),小结,x,y,O,设z=x+yi(x,yR),满足|z|=5(zC)的复数z对应的点在复平面上将构成怎样的图形?,5,5,5,5,以原点为圆心,半径为5的圆.,图形:,5,x,y,O,设z=x+yi(x,yR),满足3|z|5(zC)的复数z对应的点在复平面上将构成怎样的图形?,5,5,5,5,3,3,3,3,图形:,以原点为圆心,半径3至5的圆环内,(1)|z(1+2i)|,(2)|z+(1+2i)|,例5已知复数z对应点A,说明下列各式所表示的几何意义.,点A到点(1,2)的距离,点A到点(1,2)的距离,(3)|z1|,(4)|z+2i|,点A到点(1,0)的距离,点A到点(0,2)的距离,已知复数m=23i,若复数z满足等式|zm|=1,则z所对应的点的集合是什么图形?,以点(2,3)为圆心,1为半径的圆.,小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 连锁酒店经营合同协议
- 买方土地居间合同协议合同书
- 路基路面检测合同协议
- 道具修缮费合同协议
- 邯郸拆迁协议书范本
- 日剧恋爱协议书
- 运输公司装卸费合同协议
- 车辆保险购置合同协议
- 更正合同协议书
- 有代付款协议书
- 炊事人员考试题及答案
- 《埃菲尔铁塔》课件
- 形象设计概论试题及答案
- 红细胞生成素靶向治疗策略-全面剖析
- 人教版美术一年级下册《走进旧时光》课件
- 2025-2030中国棒棒糖行业市场现状供需分析及投资评估规划分析研究报告
- 不同来源硫酸软骨素的化学结构、抗氧化与降脂活性对比
- 天津东疆综合保税区管理委员会招聘笔试题库2025
- 广东省2024-2025学年佛山市普通高中教学质量检测英语试卷及答案(二)高三试卷(佛山二模)
- 江苏省南京市江宁区2024-2025学年统编版二年级下册期中考试语文试卷(含答案)
- 铁路调车综合实训铁鞋的使用和注意事项课件
评论
0/150
提交评论