圆周运动专--题PPT课件_第1页
圆周运动专--题PPT课件_第2页
圆周运动专--题PPT课件_第3页
圆周运动专--题PPT课件_第4页
圆周运动专--题PPT课件_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

.,1,匀速圆周运动,.,2,一.描述圆周运动的物理量v、T、f、n、a向v=rT=2/T=1/f=2na向=v2/r=r2=r42/T2,二匀速圆周运动:物体在圆周上运动;任意相等的时间内通过的圆弧长度相等。,三.匀速圆周运动的向心力:F=ma向=mv2/r,四.做匀速圆周运动的物体,受到的合外力的方向一定沿半径指向圆心(向心力),大小一定等于mv2/r.,五.做变速圆周运动的物体,受到的合外力沿半径指向圆心方向的分力提供向心力,大小等于mv2/r;沿切线方向的分力产生切向加速度,改变物体的速度的大小。,.,3,典型的变速圆周运动竖直平面内的圆周运动,1、模型一:细绳、圆形轨道模型(只能提供拉力),最高点:,临界条件:,临界速度:,最高点:,临界条件:,临界速度:,能通过最高点的条件是在最高点速度,.,4,2、模型二:轻杆、圆管模型,(1),:轻杆提供向下拉力(圆管的外壁受到挤压提供向下的支持力),:轻杆提供向上的支持力(圆管的内壁受到挤压提供向上的支持力),:重力恰好提供作为向心力,轻杆(圆管)对球没有力的作用,(2),(3),(4),.,5,例1绳系着装有水的水桶,在竖直平面内做圆周运动,水的质量m0.5kg,绳长l60cm,求:(1)在最高点时水不流出的最小速率;(2)水在最高点速率v3m/s时,水对桶底的压力,答案:(1)2.42m/s(2)2.6N,方向竖直向上,.,6,.,7,变式训练11如图所示,用长为L的细绳拴着质量为m的小球,在竖直平面内做圆周运动,则下列说法中正确的是(),A小球在最高点所受的向心力一定等于重力B小球在最高点时绳子的拉力可能为零C小球在最低点时绳子的拉力一定大于重力D若小球恰能在竖直平面内做圆周运动,则它在最高点的速率为,BCD,.,8,解析:在竖直面内的圆周运动与水平面内的圆周运动相比,由于重力的缘故而较为复杂,因此在分析该类问题时一定要结合具体位置进行分析小球在做圆周运动时,受重力作用,另外绳子对小球的拉力随其位置和状态的改变而变化在最低点,拉力既要平衡物体的重力、又要提供物体的向心力,因此它一定大于重力,在最高点,如小球恰能做圆周运动,不需要绳子提供拉力,则该点小球只受重力作用,此时mgm;若小球速度增大,则其所需向心力亦随着增大,因此需要绳子提供拉力,.,9,例2右图为工厂中的行车示意图设钢丝长3m,用它吊着质量为2.7t的铸件,行车以2m/s的速度匀速行驶,当行车突然刹车时,钢丝绳受到的拉力为多少?(g取10m/s2),分析:行车也叫天车,是吊在车间上部固定轨道上的动力车,下悬钢丝绳至地面处,钢丝绳下端可挂载重物,以便在车间内移动物体本题中铸件开始做匀速直线运动,行车突然停止,铸件的速度在瞬间内不变,钢丝绳的悬点固定,铸件在竖直平面内做小幅度的圆周运动,.,10,变式训练21如图所示,一根绳长l1m,上端系在滑轮的轴上,下端拴一质量为m1kg的物体,滑轮与物体一起以2m/s的速度匀速向右运动,当滑轮碰上固定障碍物B突然停止的瞬间,细绳受到的拉力为_N.(g取10m/s2),答案:14N,.,11,例3如图(甲)所示,在光滑的圆锥顶用长为L的细线悬挂一质量为m的小球,圆锥顶角为2,当圆锥和球一起以角速度匀速转动时,球压紧锥面,此时绳的张力是多少?若要小球离开锥面,则小球的角速度至少为多少?,.,12,分析:小球以圆锥轴线为轴,在水平面内匀速转动,要小球离开锥面的临界条件是锥面对小球的弹力为零,解析:(1)对小球进行受力分析,如图(乙)所示,根据牛顿第二定律,x方向上有TsinNcosm2r,y方向上有NsinTcosG0又因rLsin联立可得Tmgcosm2Lsin2.,.,13,变式训练31两绳AC、BC系一质量m0.1kg的小球,且AC绳长l2m,两绳都拉直时与竖直轴夹角分别为30和45,如图所示当小球以4rad/s绕AB轴转动时,上下两绳拉力分别是多少?,.,14,.,15,规律总结:临界问题是在物体的运动性质发生突变,把要发生而尚未发生时的特殊条件称为临界条件,由临界条件求临界量,比较实际物理量与临界物理量的大小,确定状态,分析受力,由牛顿定律列方程求解几种临界条件,举例如下:1脱离:临界条件为N0;2断裂:临界条件为TTm;3结构变化:临界条件为绳上张力T0等;4发生相对运动:临界条件接触面的摩擦力不能保证以共同加速度运动,.,16,传送带模型:例1、如图所示,两个轮通过皮带传动,设皮带与轮之间不打滑,A为半径为R的O1轮缘上一点,B、C为半径为2R的O2轮缘和轮上的点,O2C=2R/3,当皮带轮转动时,A、B、C三点的角度之比:A:B:C=;A、B、C三点的线速度之比vA:vB:vC=;及三点的向心加速度之比aA:aB:aC=.,注意:皮带传动的两个轮子边缘上各点的线速度相等;同一个轮子上各点的角速度相等。,2:1:1,3:3:1,6:3:1,.,17,变式训练:如图所示,摩擦轮A和B通过中介轮C进行传动,A为主动轮,A的半径为20cm,B的半径为10cm,A、B两轮边缘上的点,角速度之比_;向心加速度之比为_,1:2,1:2,.,18,同轴转动问题:例2、如图所示,在光滑杆上穿着两个小球m1、m2,且m12m2,用细线把两球连起来,当盘架匀速转动时,两小球刚好能与杆保持无相对滑动,此时两小球到转轴的距离r1与r2之比为(),D,.,19,变式训练如图所示,质量相等的小球A、B分别固定在轻杆的中点及端点,当杆在光滑的水平面上绕O点匀速转动时,求杆的OA段及AB段对球的拉力之比,解析:隔离A、B受力分析如图所示由于A、B放在水平面上,故GFN,又由A、B固定在同一根轻杆上,所以A、B的角速度相同,设角速度为,则由向心力公式可得,对A:FOAFBAmr2对B:FABm2r2联立以上两式得FOAFAB32.,.,20,变式训练如图所示,直径为d的纸制圆筒,正以角速度绕轴O匀速转动,现使枪口对准圆筒,使子弹沿直径穿过,若子弹在圆筒旋转不到半周时在筒上留下a,b两弹孔,已知aO与Ob夹角为,则子弹的速度为.,解:t=d/v=(-)/,v=d/(-),d/(-),.,21,多值问题:例3、如图所示,在半径为R的水平圆盘的正上方高h处水平抛出一个小球,圆盘做匀速转动,当圆盘半径OB转到与小球水平初速度v0方向平行时,小球开始抛出,要使小球只与圆盘碰撞一次,且落点为B,求小球的初速度v0和圆盘转动的角速度.,解:由平抛运动规律R=v0th=1/2gt2,t=2n/,(n=1、2、3、4、),.,22,多值问题:例4.圆桶底面半径为R,在顶部有个入口A,在A的正下方h处有个出口B,在A处沿切线方向有一个斜槽,一个小球恰能沿水平方向进入入口A后,沿光滑桶壁运动,要使小球由出口B飞出桶外,则小球进入A时速度v必须满足什么条件?,解:,小球的运动由两种运动合成:a.水平面内的匀速圆周运动;b.竖直方向的自由落体运动,自由落体运动h=1/2gt2,圆周运动的周期设为T,T=2R/v,当t=nT时,小球可由出口B飞出桶外,(n=1、2、3、4、),.,23,水平转盘:例5、如图所示,光滑的水平圆盘中心有一小孔,用细绳穿过小孔,两端分别系有A、B物体,定滑轮的摩擦不计,物体A随光滑圆盘一起匀速转动,悬挂B的细线恰与圆盘的转动轴OO重合,下列说法中正确的是()(A)使物体A的转动半径变大一些,在转动过程中半径会自动恢复原长(B)使物体A的转动半径变大一些,在转动过程中半径会越来越大(C)使物体A的转动半径变小一些,在转动过程中半径会随时稳定(D)以上说法都不正确,B,.,24,水平转盘:例6、如图,细绳一端系着质量M=0.6千克的物体,静止在水平面,另一端通过光滑小孔吊着质量m=0.3千克的物体,M的中点与圆孔距离为0.2米,并知M和水平面的最大静摩擦力为2牛,现使此平面绕中心轴线转动,问角速度在什么范围m会处于静止状态?(g取10米/秒2),解:设物体M和水平面保持相对静止。,当具有最小值时,M有向圆心运动趋势,故水平面对M的摩擦力方向和指向圆心方向相反,且等于最大静摩擦力2牛。,隔离M有:Tfm=M12r,0.3102=0.6120.2,1=2.9(弧度/秒),当具有最大值时,M有离开圆心趋势,水平面对M摩擦力方向指向圆心,大小也为2牛。,隔离M有:Tfm=M22r,0.3102=0.6220.2,2=6.5(弧度/秒),故范围是:2.9弧度/秒6.5弧度/秒。,.,25,一小球用轻绳悬挂在某固定点,现将轻绳水平拉直,然后由静止开始释放小球考虑小球由静止开始运动到最低位置的过程()A小球在水平方向的速度逐渐增大B小球在竖直方向的速度逐渐增大C到达最低位置时小球线速度最大D到达最低位置时绳子的拉力等于小球重力,2000年上海,分析小球释放后水平方向受力为绳拉力的水平分力,该力与水平分速度同方向,因此在水平方向上速度逐渐增大,A正确.,在初始位置竖直速度为0,最低位置竖直速度也为0,在竖直方向上小球显然先加速运动,后减速运动,B错误,线速度即小球运动的合速度,小球位置越低,势能转化为动能就越多,速度也就越大,C正确.,小球在最低位置时速度为水平速度,由于小球做圆周运动,绳拉力与球重力的合力提供向心力,即D错误,AC,.,26,重力、绳的拉力,重力、杆的拉力或支持力,重力、外管壁的支持力或内管壁的支持力,竖直平面内的变速圆周运动,.,27,细线模型:例7长度为0.5m的轻质细杆,A端有一质量为3kg的小球,以O点为圆心,在竖直平面内做圆周运动,如图所示,小球通过最高点时的速度为2m/s,取g=10m/s2,则此时轻杆OA将()A受到6.0N的拉力B受到6.0N的压力C受到24N的拉力D受到54N的拉力,解:设球受到杆向上的支持力N,受力如图示:,则mg-N=mv2/l,得N=6.0N,由牛顿第三定律,此时轻杆OA将受到球对杆向下的压力,大小为6.0N.,B,.,28,细杆模型:例8杆长为L,球的质量为m,杆连球在竖直平面内绕轴O自由转动,已知在最高点处,杆对球的弹力大小为F=1/2mg,求这时小球的即时速度大小。,解:小球所需向心力向下,本题中F=1/2mgmg,所以弹力的方向可能向上,也可能向下。,若F向上,则,若F向下,则,.,29,例9.如图所示,在质量为M的物体内有光滑的圆形轨道,有一质量为m的小球在竖直平面内沿圆轨道做圆周运动,A与C两点分别道的最高点和最低点,B、D两点与圆心O在同一水平面上。在小球运动过程中,物体M静止于地面,则关于物体M对地面的压力N和地面对物体M的摩擦力方向,下列正确的说法是()A.小球运动到B点时,NMg,摩擦力方向向左B.小球运动到B点时,N=Mg,摩擦力方向向右C.小球运动到C点时,N=(M+m)g,地面对M无摩擦D.小球运动到D点时,N=(M+m)g,摩擦力方向向右,点拨:画出各点的受力图如图示:,B,.,30,练习1用钢管做成半径为R=0.5m的光滑圆环(管径远小于R)竖直放置,一小球(可看作质点,直径略小于管径)质量为m=0.2kg在环内做圆周运动,求:小球通过最高点A时,下列两种情况下球对管壁的作用力.取g=10m/s2(1)A的速率为1.0m/s(2)A的速率为4.0m/s,解:,先求出杆的弹力为0的速率v0,mg=mv02/l,v02=gl=5,v0=2.25m/s,(1)v1=1m/sv0球应受到外壁向下的支持力N2如图示:,则mg+N2=mv22/l,得N2=4.4N,由牛顿第三定律,球对管壁的作用力分别为(1)对内壁1.6N向下的压力(2)对外壁4.4N向上的压力.,.,31,练习2小球在半径为R的光滑半球内做水平面内的匀速圆周运动,试分析图中的(小球与半球球心连线跟竖直方向的夹角)与线速度v、周期T的关系。(小球的半径远小于R),解:,小球做匀速圆周运动的圆心在和小球等高的水平面上(不在半球的球心),向心力F是重力G和支持力N的合力,所以重力和支持力的合力方向必然水平。如图所示:,由牛顿运动定律,有:,由此可得:,(式中h为小球轨道平面到球心的高度),可见,越大,即h越小,v越大,T越小。,本题的分析方法和结论同样适用于圆锥摆、火车转弯、飞机在水平面内做匀速圆周飞行等在水平面内的匀速圆周运动的问题。共同点是由重力和弹力的合力提供向心力,向心力方向水平。,.,32,练习3长为2L的轻杆AB两端各固定有质量为m1和m2的小球,且m1m2,过杆的中点O处有光滑的水平转动轴。杆可绕轴在竖直平面内转动,当杆到达竖直位置时,转动的角速度为,A球正好位于上端,B球位于下端,则沿竖直方向,杆作用于固定轴的力的方向一定向上的条件是什么?,解:,由牛顿第三定律,杆作用于固定轴的力的方向向上,则杆受到轴的作用力N一定向下,如图示:对杆由平衡条件,杆受到A球的作用力一定大于B球对杆的作用力,F1F2,对A球:F1+m1g=m12L,对B球:F2-m2g=m22L,F1=m12L-m1g,F2=m22L+m2g,F1-F20,2L(m1+m2)g(m1-m2),.,33,练习4、如图示,质量为M的电动机始终静止于地面,其飞轮上固定一质量为m的物体,物体距轮轴为r,为使电动机不至于离开地面,其飞轮转动的角速度应如何?,解:当小物体转到最高点时,,对底座,受到重力Mg和物体对底座的拉力T,为使电动机不至于离开地面,必须TMg,对物体,受到重力mg和底座对物体的拉力T,由圆周运动规律有mg+T=mr2,即mr2(M+m)g,.,34,在高速公路的拐弯处,路面造得外高内低,即当车向右拐弯时,司机左侧的路面比右侧的要高一些

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论