




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.新课标全国卷文科数学汇编不 等 式 选 讲一、解答题【2017,23】已知函数,(1)当时,求不等式的解集;(2)若不等式的解集包含,求的取值范围【2016,23】已知函数()在答题卡第(24)题图中画出的图像;()求不等式的解集【2015,24】已知函数.(I)当时求不等式的解集;(II)若的图像与x轴围成的三角形面积大于6,求a的取值范围.【2014,24)】若,且.() 求的最小值;()是否存在,使得?并说明理由.【2013,24】已知函数f(x)|2x1|2xa|,g(x)x3.(1)当a2时,求不等式f(x)g(x)的解集;(2)设a1,且当x时,f(x)g(x),求a的取值范围【2012,24】已知函数。(1)当时,求不等式的解集;(2)若的解集包含1,2,求的取值范围。【2011,24】设函数,其中。()当时,求不等式的解集;()若不等式的解集为 ,求a的值。解 析一、解答题【2017,23】已知函数,(1)当时,求不等式的解集;(2)若不等式的解集包含,求的取值范围【解析】(1)当时,是开口向下,对称轴的二次函数,当时,令,解得,在上单调递增,在上单调递减,此时解集为当时,当时,单调递减,单调递增,且综上所述,解集(2)依题意得:在恒成立即在恒成立则只须,解出:故取值范围是【2016,23】已知函数()在答题卡第(24)题图中画出的图像;()求不等式的解集【解析】:如图所示: ,,解得或,,解得或,或,解得或,或综上,或或,解集为【2015,24】已知函数.(I)当时求不等式的解集;(II)若的图像与x轴围成的三角形面积大于6,求a的取值范围.解析:(I)(方法一)当时,不等式可化为,等价于或或,解得.(方法二)当时,不等式可化为,结合绝对值的几何意义,不等式的含义为:数轴上一点x到点的距离与它到1的距离的2倍之差大于1.-11x设点x到的距离为,到的距离为,结合数轴可知:若x在内,则有解得;故.若x在内,则有解得;故.1x-1综上可得.()由题设可得, 所以函数的图像与轴围成的三角形的三个顶点分别为,所以ABC的面积为.由题设得6,解得.所以的取值范围为(2,+).【2014,24)】若,且.() 求的最小值;()是否存在,使得?并说明理由.【解析】:() 由,得,且当时等号成立,故,且当时等号成立,的最小值为. 5分()由,得,又由()知,二者矛盾,所以不存在,使得成立. 10分【2013,24】已知函数f(x)|2x1|2xa|,g(x)x3.(1)当a2时,求不等式f(x)g(x)的解集;(2)设a1,且当x时,f(x)g(x),求a的取值范围解:(1)当a2时,不等式f(x)g(x)化为|2x1|2x2|x30.设函数y|2x1|2x2|x3,则y其图像如图所示从图像可知,当且仅当x(0,2)时,y0.所以原不等式的解集是x|0x2(2)当x时,f(x)1a.不等式f(x)g(x)化为1ax3.所以xa2对x都成立故a2,即.从而a的取值范围是.【2012,24】已知函数。(1)当时,求不等式的解集;(2)若的解集包含1,2,求的取值范围。【解析】(1)当时,。 所以不等式可化为,或,或。解得,或。因此不等式的解集为或。 (2)由已知即为,也即。若的解集包含1,2,则,也就是,所以,从而,解得。因此的取值范围为。【2011,24】设函数,其中。()当时,求不等式的解集;()若不等式的解集为 ,求a的值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农村合作社水产养殖技术转让协议
- 审计部门个人工作总结
- 学校集体户外活动方案
- 制定亲子活动方案
- 消防课件街道社区素材
- 校园策划主题活动执行方案
- 怎么写员工激励方案
- 评选高级教师个人工作总结
- 消防课件模板素材库下载
- 有关图书馆管理员工作方案
- 社区工作者考试(选择题200题)带答案
- 2025年高校教师资格证之高等教育心理学通关题库附带答案
- 广东省2025年化学高一下期末教学质量检测模拟试题含解析
- 法院督办约谈制度方案
- 2025至2030全球及中国隔膜式氢气压缩机行业项目调研及市场前景预测评估报告
- 社区上半年安全生产工作总结
- 2025民用建筑智能配电设计标准
- 2025至2030中国精神病医院行业发展分析及发展趋势分析与未来投资战略咨询研究报告
- GB/Z 43281-2023即时检验(POCT)设备监督员和操作员指南
- 02-管棚支护计算书
- 厦门大学课程设计-甲醇-水精馏
评论
0/150
提交评论