[理学]电路第五版第八章PPT课件_第1页
[理学]电路第五版第八章PPT课件_第2页
[理学]电路第五版第八章PPT课件_第3页
[理学]电路第五版第八章PPT课件_第4页
[理学]电路第五版第八章PPT课件_第5页
已阅读5页,还剩44页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

.,1,第八章相量法,2.正弦量的相量表示,3.电路定理的相量形式;,重点:,1.正弦量的表示、相位差;,.,2,相量法,用以分析正弦稳态交流电路正弦稳态交流电路电路中所有的激励和响应均为同频率的正弦量相量法用复数表示正弦量,用复数运算取代正弦量的三角函数运算,.,3,8-1复数,1.问题的提出:,电路方程是微分方程:,两个正弦量的相加:如KCL、KVL方程运算。,.,4,i1,i1+i2i3,i2,角频率:有效值:初相位:,因同频的正弦量相加仍得到同频的正弦量,所以,只要确定初相位和有效值(或最大值)就行了。因此,,i3,实际是变换的思想,.,5,复数A的表示形式,A=a+jb,2.复数及运算,.,6,两种表示法的关系:,或,注意所在的象限:,例:代数形式极坐标形式,.,7,则A1A2=(a1a2)+j(b1b2),(1)加减运算采用代数形式,若A1=a1+jb1,A2=a2+jb2,复数运算,则A1A2=(a1a2)+j(b1b2),图解法,要求:|180,若A1=a1+jb1,A2=a2+jb2,.,8,(2)乘除运算采用极坐标形式,除法:模相除,辐角相减。,例1.,乘法:模相乘,辐角相加。,则:,解,.,9,例2.,(3)旋转因子(模为1的复数):,复数ejq=cosq+jsinq=1q,Aejq相当于A逆时针旋转一个角度q,而模不变。故把ejq称为旋转因子。,解,.,10,故+j,j,-1都可以看成旋转因子。,几种不同值时的旋转因子,.,11,8-2正弦量,1.正弦量,瞬时值表达式:,i(t)=Imcos(wt+y),波形:,周期T(period)和频率f(frequency):,频率f:每秒重复变化的次数。,周期T:重复变化一次所需的时间。,单位:Hz,赫(兹),单位:s,秒,正弦量为周期函数f(t)=f(t+kT),.,12,正弦电流电路,激励和响应均为正弦量的电路(正弦稳态电路)称为正弦电路或交流电路。,(1)正弦稳态电路在电力系统和电子技术领域占有十分重要的地位。,研究正弦电路的意义:,1)正弦函数是周期函数,其加、减、求导、积分运算后仍是同频率的正弦函数,优点:,2)正弦信号容易产生、传送和使用。,.,13,(2)正弦信号是一种基本信号,任何变化规律复杂的信号可以分解为按正弦规律变化的分量。,对正弦电路的分析研究具有重要的理论价值和实际意义。,.,14,幅值(amplitude)(振幅、最大值)Im,(2)角频率(angularfrequency),2.正弦量的三要素,t,i,O,T,(3)初相位(initialphaseangle)y,2,t,单位:rad/s,弧度/秒,反映正弦量变化幅度的大小。,相位变化的速度,反映正弦量变化快慢。,反映正弦量的计时起点,常用角度表示。,i(t)=Imcos(wt+y),工频电:f=50Hz,=2f=314rad/s,.,15,同一个正弦量,计时起点不同,初相位不同。,一般规定:|。,=0,=/2,=/2,.,16,例,已知正弦电流波形如图,103rad/s,(1)写出i(t)表达式;(2)求最大值发生的时间t1,解,由于最大值发生在计时起点右侧,.,17,3.同频率正弦量的相位差(phasedifference)。,设u(t)=Umcos(wt+yu),i(t)=Imcos(wt+yi),则相位差:j=(wt+yu)-(wt+yi)=yu-yi,j0,u超前ij角,或i落后uj角(u比i先到达最大值);,j0,i超前uj角,或u滞后ij角,i比u先到达最大值。,等于初相位之差,规定:|(180)。,.,18,j0,同相:,j=(180o),反相:,特殊相位关系:,=p/2:正交u领先ip/2,不说u落后i3p/2;i落后up/2,不说i领先u3p/2。,同样可比较两个电压或两个电流的相位差。,.,19,例,计算下列两正弦量的相位差。,解,不能比较相位差,两个正弦量进行相位比较时应满足同频率、同函数、同符号,且在主值范围比较。,.,20,4.周期性电流、电压的有效值,周期性电流、电压的瞬时值随时间而变,为了衡量其平均效果工程上采用有效值来表示。,周期电流、电压有效值(effectivevalue)定义,有效值也称均方根值(root-meen-square),物理意义,.,21,同样,可定义电压有效值:,正弦电流、电压的有效值,设i(t)=Imcos(t+),.,22,同理,可得正弦电压有效值与最大值的关系:,若一交流电压有效值为U=220V,则其最大值为Um311V;,U=380V,Um537V。,(1)工程上说的正弦电压、电流一般指有效值,如设备铭牌额定值、电网的电压等级等。但绝缘水平、耐压值指的是最大值。因此,在考虑电器设备的耐压水平时应按最大值考虑。,(2)测量中,交流测量仪表指示的电压、电流读数一般为有效值。,(3)区分电压、电流的瞬时值、最大值、有效值的符号。,注,.,23,相量法分析求解正弦稳态交流电路的有效工具正弦稳态交流电路电路所有的激励、响应(电压或电流)均为同频率的正弦量,8-3相量法的基础,.,24,造一个复函数,对A(t)取实部:,对于任意一个正弦时间函数都有唯一与其对应的复数函数,A(t)包含了三要素:I、w,复常数包含了I,。,A(t)还可以写成,无物理意义,是一个正弦量有物理意义,1.正弦量的相量表示,.,25,称为正弦量i(t)对应的相量。,相量的模表示正弦量的有效值相量的辐角表示正弦量的初相位,同样可以建立正弦电压与相量的对应关系:,若用最大值表示最大值相量:,.,26,已知,例1,试用相量表示i,u.,解,或:,.,27,在复平面上用向量表示相量的图,例2,试写出电流的瞬时值表达式。,解,相量图,.,28,2.相量法的应用,(1)同频率正弦量的加减,故同频正弦量相加减运算变成对应相量的相加减运算。,可得其相量关系为:,.,29,例,也可借助相量图计算,首尾相接,.,30,(2)正弦量的微分,积分运算,微分运算:,积分运算:,.,31,例,用相量运算:,相量法的优点:,(1)把时域问题变为复数问题;,(2)把微积分方程的运算变为复数方程运算;,(3)可以把直流电路的分析方法直接用于交流电路;,.,32,注,相量法只适用于激励为同频正弦量的非时变线性电路。,相量法用来分析正弦稳态电路。,.,33,8-4电路定律的相量形式,1.电阻元件VCR的相量形式,时域形式:,相量形式:,相量模型,有效值关系,相位关系,相量关系:,.,34,瞬时功率:,波形图及相量图:,瞬时功率以2交变。始终大于零,表明电阻始终吸收功率,同相位,.,35,时域形式:,相量形式:,相量模型,相量关系:,2.电感元件VCR的相量形式,.,36,感抗的物理意义:,(1)表示限制电流的能力;,(2)感抗和频率成正比;,相量表达式:,XL=L=2fL,称为感抗,单位为(欧姆)BL=-1/L=-1/2fL,感纳,单位为S,感抗和感纳:,.,37,功率:,瞬时功率以2交变,有正有负,一周期内刚好互相抵消,波形图及相量图:,电压超前电流900,.,38,时域形式:,相量形式:,相量模型,相量关系:,3.电容元件VCR的相量形式,.,39,XC=-1/wC,称为容抗,单位为(欧姆)BC=wC,称为容纳,单位为S,频率和容抗成反比,0,|XC|直流开路(隔直)w,|XC|0高频短路(旁路作用),容抗与容纳:,相量表达式:,.,40,功率:,瞬时功率以2交变,有正有负,一周期内刚好互相抵消,波形图及相量图:,电流超前电压900,.,41,4.基尔霍夫定律的相量形式,同频率的正弦量加减可以用对应的相量形式来进行计算。因此,在正弦电流电路中,KCL和KVL可用相应的相量形式表示:,上式表明:流入某一节点的所有正弦电流用相量表示时仍满足KCL;而任一回路所有支路正弦电压用相量表示时仍满足KVL。参见“单一参数关系表(word文档)”,.,42,例1,试判断下列表达式的正、误:,L,.,43,例2,已知电流表读数:,解,.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论