已阅读5页,还剩64页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
纳米材料与纳米技术,材料科学与工程学系王秀丽wangxl,2,引言:,回首近代科学技术的发展:,(一)蒸汽机时代:产业的机械化,(二)电力时代:产业的电气化,(三)电子计算机时代:产业的信息化和网络化,21世纪,随着科技的发展,人类又将迎来什么时代呢?,3,纳米科技时代,4,Nature公布2001十大科技成果纳米电脑列首位自然杂志资深编辑菲尔-斯祖罗米表示:“尽管真正意义的微型计算机还需几年时间才能制成,但纳米技术在计算机领域的应用意味着今后人们的日常生活将发生巨大的变化,装有纳米计算机芯片的电灯可以完全实现智能化,根据居室的自然照明情况自动调节亮度,。”在研制纳米计算机方面做出很大贡献的研究人员包括美国哈佛大学的YuHuang及其同事,他们研制的微型电线是普通电线的千分之一,可以轻松的安装到硅芯片上。Science杂志评出2001年世界十大科技突破纳米技术领域获得多项重大成果继在2000年开发出一批纳米级装置后,科学家2001年再进一步将这些纳米装置连接成为可以工作的电路,这包括了纳米导线、以及纳米碳管和纳米导线为基础的逻辑电路、以及只使用一个分子晶体管的可计算电路。分子水平计算技术的飞跃,有可能为未来诞生极微小但极快速的分子计算机铺平道路。,5,中国未来十大科技突破口之纳米材料与纳米技术,纳米科技是20世纪末才逐步发展起来的新兴科学领域,它的迅猛发展将在21世纪促使几乎所有工业领域产生一场革命性的变化。纳米材料是未来社会发展极为重要的物质基础,许多科技新领域的突破迫切需要纳米材料和纳米科技支撑,传统产业的技术提升也急需纳米材料和纳米技术的支持。,6,一、纳米技术的提出,1905年春天,爱因斯坦写信给他的同事康法拉哈比希特,透露自己在这一年中将做4项工作,其一是要测量出分子的真正大小,估计出一个糖分子的直径约为1纳米,首次将纳米与分子大小挂上钩,并证明了分子的存在。这是20世纪初物理学界十分关注的问题之一。,7,一、纳米技术的由来和发展,1959年12月,在美国物理学会年会上,著名物理学家、诺贝尔物理奖得主理查德费曼教授作了一次非常著名的讲演,题目叫做“自底层构造的丰富结构”。其中有一段话是这样说的:“我认为,物理学的原理并不排斥有一个一个的安排原子来制造东西。这样做,并不违反任何定理,因而在原则上是可以实现的。它在实践中迄今未实现是因为我们太大了。”他还说:“如果我们能按照自己的愿望一个一个的安排原子,将会出现什么这些物质将有什么性质?这是十分有趣的理论问题。虽然我不能精确回答它,但我决不怀疑当我们能在如此小的尺度上进行操纵时,将得到具有大量独特性质的物质。”现在,理查德费曼的演讲已被看作是纳米科技基本概念的起源,有人甚至将纳米科技形象的称为“费曼之梦”。,8,1985年,美国科学家在研究团簇的过程中发现了C60,它是足球式的中空形分子,直径为0.7nm,C60的发现反应了自然界物质在纳米尺度下的有序排列的优异性能,罗伯特柯尔(RiceUnivercity)等人因这一发明获得了1996年度诺贝尔化学奖。C60也被称作“富勒烯”,因形状极像足球又被称为“巴基球”,9,1986年,IBM公司宾尼(Binnig),与苏黎士实验室的盖博(ChristophGerber)及美国史丹佛大学魁特(CalvinFQuate)发明了原子力显微镜(AFM,AtomicForceMicroscopy)。AFM可以用于分辨包括绝缘体在内的各种材料表面,弥补了STM只能分辨导电材料表面的不足,其应用范围无疑比STM更加广阔。同年,预测专家K.E.Drexler博士的创造的引擎纳米技术新纪元出版。该书中作者推测利用蛋白质在原子水平上进行合成,制造机器人。,10,1990年,美国IBM公司在镍表面用35个氙原子组成了一个“IBM”图案。标志着人类已经具备操纵单个原子的能力。,1988年,美国杜邦Dupont公司的科研人员W.Degrado等无意中设计出一种新的蛋白质,世界上第一个认为设计的蛋白质诞生了。,11,12,13,14,15,16,纳米纪事最早的纳米材料:-中国古代的铜镜的保护层:纳米氧化锡-中国古代的墨及染料-1857年,法拉第制备出金纳米颗粒-1861年,胶体化学的建立-1962年,久保(Kubo)提出著名的久保理论-上世纪七十年代末至八十年代初,开始较系统的研究-1985年,Kroto和Smalley等人发现C60-1990年7月,在美国巴尔的摩召开第一届纳米科技会议-1994年,在波士顿召开的MRS秋季会议上正式提出纳米材料工程,17,纳米材料发展的三个阶段,第一阶段(1990年以前)主要是在实验室探索用各种手段制备各种材料的纳米颗粒体,合成块体(包括薄膜),研究评估表征的方法,探索纳米材料不同于常规材料的特殊性能。对纳米颗粒和纳米块体材料结构的研究在80年代末期一度形成热潮。研究的对象一般局限在单材料和单相材料,国际上通常把这类纳米材料称纳米晶或纳米相材料。第二阶段(1994年前)人们关注的热点是如何利用纳米材料已挖掘出来的奇特物理、化学和力学性能,设计纳米复合材料,通常采用纳米微粒与纳米微粒复合,纳米微粒与常规块体复合及发展复合材料的合成及物性的探索一度成为纳米材料研究的主导方向。第三阶段(从1994年到现在)纳米组装体系、人工组装合成的纳米结构的材料体系越来越受到人们的关注,正在成为纳米材料研究的新的热点。,18,19,二、纳米材料概述,几十个原子、分子或成千个原子、分子“组合”在一起时,表现出既不同于单个原子、分子的性质,也不同于大块物体的性质。,过渡区-纳米世界,以原子、分子为主体-微观世界,人类活动的-宏观世界,-介观世界,2、纳米材料是介于微观与宏观之间,1、什么是纳米材料,纳米(nm):,纳米材料(0.1100nm):,20,21,目前科技界普遍公认的纳米科技的定义是:在纳米尺度上研究物质的特性和相互作用以及如何利用这些特性和相互作用以及如何利用这些特性和相互作用的具有多学科交叉性质的科学和技术若以研究对象或工作性质来区分,纳米科技包括三个研究领域:(1)纳米材料(2)纳米器件(3)纳米尺度的检测与表征其中纳米材料是纳米科技的基础;纳米器件的研制水平和应用程度是人类是否进入纳米科技时代的重要标志;纳米尺度的检测与表征是纳米科技研究必不可少的手段和理论与实验的重要基础。,纳米科技不仅仅是纳米材料的问题,22,纳米科技不仅仅是传统微加工技术的扩展和延伸,纳米科技的最终目的是以原子、分子为起点,去设计制造具有特殊功能的产品。在未来,人们将可以用纳米技术一个一个地将原子组装起来,制成各种纳米机器如纳米泵、纳米齿轮、纳米轴承和用于分子装配的精密运动控制器,23,荷叶表面有纳米尺寸纤毛,弱透过电子显微镜观察叶子表面,发现叶子表面纤毛形成凸起,会使叶子表面不容易被水粒子及污泥沾附,而达到自洁的功效,这就是荷花出淤泥而不染的原因。,自然界的纳米科技,莲花效应(Lotuseffect),24,蜜蜂的导航功能,蜜蜂体内存在磁性纳米粒子,这些粒子具有罗盘的作用,这是蜜蜂飞行的导航系统。,25,有些人认为,纳米技术与微米技术相比仅仅是尺寸缩小、精度提高的问题,检验一项技术或产品只要看它是否是纳米级即可。这种认识是片面的。纳米科技的重要意义主要体现是在这样又一个尺寸范围内,其所研究的物质对象将产生许多既不同于单个原子、分子的奇异性质或对原有性质有十分显著的改进和提升。,C.纳米材料不仅仅是颗粒尺寸减小的问题,26,限域效应,导致纳米材料产生奇异性能的主要限域效应有:比表面效应、小尺寸效应、界面效应和宏观量子效应等。这些效应使纳米体系的光、电、热、磁等物理性质与常规材料不同,出现许多新奇特性。同一材料由于纳米尺度不同而发出不同颜色的伏案这种现象摆脱了传统材料发光峰位受材料自身性质的束缚,可以形成多种发光材料。,27,因此,判断纳米材料,不仅仅是看颗粒是否在纳米量级,更重要的是检测它在这一尺寸下,是否发生了性质的改变或原有性能显著地提高。由此可见,纳米材料的颗粒尺寸应该均匀分布。如果颗粒尺寸分布的范围很广,甚至只有少部分颗粒尺寸在纳米级,材料整体性质就不会有显著变化。,28,四、纳米材料的分类,纳米材料根据三维空间违背纳米尺度约束的自由度计,可分为:,29,指在空间有两维处于纳米尺度的材料。如纳米丝、纳米棒、纳米管、纳米带等。,A、零维纳米材料,指在空间三维尺度均在纳米尺寸以内的材料。如纳米尺寸颗粒、原子团簇、人造原子等。,b、一维纳米材料,30,纳米固体材料通常指由尺寸小于15纳米的超微颗粒在高压力下压制成型,或再经一定热处理工序后所产生的紧密型固体材料。纳米固体材料的主要特征是具有巨大的颗粒间界面,如5nm纳米颗粒所构成的固体每立方厘米将含1019个晶界,原子的扩散系数要比大块材料高10141016倍,从而使纳米材料具有高韧性。通常陶瓷材料具有高硬度、耐磨、抗腐蚀等优点,但又具有脆性和难以加工等缺点,纳米陶瓷在一定的程度上却可增加韧性,改善脆性。,C、二维纳米材料,指在三位空间有一维纳米尺寸的才来哦。如超薄膜、多层膜等。,D、三位纳米材料(纳米固体材料),31,MorphologiesofZnOnanomarerials,32,33,34,35,纳米颗粒材料的特性,由于颗粒极度细化,晶界所占体积分数增加,使得材料的某些性能发生截然不同的变化。例如,以前给人极脆印象的陶瓷,纳米化后居然可以用来加工制造发动机零件;尽管各种块状金属有不同颜色,但当其细化到纳米级的颗粒时,所有金属都呈现黑色。纳米材料的另一特点是熔点极低,金的熔点通常是1000多摄氏度,而晶粒尺度为3nm的金微粒,其熔点仅为普通金的一半。如将纳米陶瓷退火是晶粒长大到微米量级,又将恢复通常陶瓷的特性,因此可以利用纳米陶瓷的范性对陶瓷进行挤压与轧制加工,随后进行热处理,使其转变为通常陶瓷,或进行表面热处理,使材料内部保持韧性,但表面却显示出高硬度、高耐磨性与抗腐蚀性。,36,纳米材料的结构与性能,如表面积增加使颗粒的电子状态发生突变,使颗粒呈现出特殊的表面效应与体积效应。这些因素都将决定着颗粒的最终物理化学性能使其成为“物质的特殊状态”。因此从这个意义出发,可以给纳米材料另外一个定义:物质颗粒体积效应和表面效应两者之一显著变化,或者两者变化都显著而出现的颗粒材料叫做“纳米材料”。,纳米颗粒的单位质量的表面积比原来的块状固体要大得多,它与原块状固体的根本差别就在于此,如:,37,纳米材料的特性既不同于原子,又不同于结晶体,可以说它是一种不同于本体材料的新材料,其物理化学性质与块体材料有明显差异。在结构上,大多数纳米粒子呈现为理想单晶,也有呈非晶态或亚稳态的纳米粒子。在纳米材料的结构中,存在着良好总结构组元,即晶体组元和界面组元。晶体组元由所有晶粒中的原子组成,这些原子都严格地位于晶格位置;界面组元由处于各晶粒之间的界面原子组成,这些原子由超微晶粒的表面原子转化而来。,38,晶体组元由所有晶粒中的原子组成,这些原子都严格地位于晶格位置,长程有序;界面组元由处于各晶粒间的界面原子组成,这些原子由超微晶粒的表面原子转化而来。界面原子密度低,界面上邻近原子配位数发生变化,界面原子间距差别大。纳米材料两种结构组元的存在,特别是界面组元的存在,使其特性既不同于原子,又不同于结晶体,其物理化学性质与块体材料相比有明显差异。可以说它是一种不同于本体材料的新材料。,39,小尺寸效应表面与界面效应量子尺寸效应(久保效应)宏观量子隧道效应,纳米材料的特性,40,晶体:内部质点在三维空间按周期性重复排列的固体;或者晶体是具有格子构造的固体。当粒子的尺寸与光波波长(400700nm)、德波罗意波长及超导态的相干波长等物理特性尺寸相当或更小时,晶体周期性的边界条件将被破坏,非晶态纳米颗粒的颗粒表面层附近原子密度减小,导致声、光、电磁、热力学等均呈现新的尺寸效应。对超微颗粒而言,尺寸变小,同时其比表面积亦显著增加,从而产生如下一系列新奇的性质。,小尺寸效应(Small-SizeEffects),随着颗粒尺寸的减小,在一定条件下会引起颗粒性质的质变。由于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应。,41,A特殊的光学性质,42,电导电导是常规金属和合金材料一个重要的性质。纳米材料的出现,人们对电导(电阻)的研究又进入了一个新的层次。由于纳米构中庞大的体积百分数的界面使平移周期在一定范围内遭到严重的破坏。颗粒尺寸愈小,电子平均自由程愈短,这种材料偏移理想周期场就愈严重,这就带来一系列的问题:(i)纳米金属和合金与常规材料金属与合金电导(电阻)行为是否相同?(ii)纳米材料电导(电阻)与温度的关系有什么差别?(iii)电子在纳米结构体系中的运动和散射有什么新的特点?,B基本电特性,43,纳米金属与合金的电阻,Gleiter等对纳米金属Cu,Pd,Fe块体电阻与温度关系,电阻温度系数与颗粒尺寸的关系进行了系统的研究表明:随颗粒尺寸减小,电阻温度系数下降,与常规粗晶体基本相似,其差别在于纳米材料的电阻高于常规材料,电阻温度系数强烈依赖于晶粒尺寸,当颗粒小于某一临界尺寸(电子平均自由程)时,电阻温度系数可能由正变负。,例如,纳米银细粒径和构成粒子的晶粒直径分别减小至等于或小于18nm和11nm时,室温以下的电阻随温度上升呈线性下降,即电阻温度系数由正变负。,44,由于组成原子少,表面原子处于不稳定状态,使其表面晶格振动的振幅较大,所以具有较高的表面能量,造成纳米粒子具有特有的热性质,如:熔点降低晶格比热值变大,C特殊的热学性质,45,固态物质熔点是固定的,超细微化后熔点将显著降低:1、金的常规熔点为1064,当颗粒尺寸减小到10nm时,则降低727,2nm时的熔点仅为327左右;2、银的常规熔点为670,而超微银颗粒的熔点可低于100。因此,超细银粉制成的导电浆料可以进行低温烧结,此时元件的基片不必采用耐高温的陶瓷材料,甚至可用塑料。采用超细银粉浆料,可使膜厚均匀,覆盖面积大,既省料又具有高质量。3、日本川崎钢铁公司采用0.11微米的铜、镍超微颗粒制成导电浆料可替代钯与银等贵金属。超微颗粒熔点下降的性质对粉末冶金工业具有一定的吸引力。例如,在钨颗粒中附加0.1%0.5重量比的超微镍颗粒后,可使烧结温度从3000降低到12001300,以致可在较低的温度下烧制成大功率半导体管的基片。,46,纳米材料的表面效应是指:随着粒子粒径变小,表面原子数与总原子数之比急剧增大后引起性质上的变化。纳米粉体随着粒径变小占表面位置的原子数量增加,因此纳米粉微粒通常具有相当高的表面能。,表面效应,对于普通物质,r,表面原子所占比例很小,其呈现的性质对整个物质的性质没太大影响。而对于纳米颗粒,不能忽视表面性质。在更一般的情况下,纳米颗粒不可能是理想的球形,表面原子的影响就会更大,这就是人们所称的表面效应。,对半径为r的球状超微颗粒而言,设原子直径为,则表面原子所占的比例大约为:,47,48,随着纳米微粒比表面积的增大,表面原子百分数迅速增加。由于表面原子所处环境与内部原子不同,它周围缺少相邻的原子,有许多悬空键,具有不饱和性,易于其它原子相结合而稳定下来,所以纳米晶粒减小的结果,导致其表面积、表面能及表面结合能都迅速增大,致使其表现出很高的化学活性。利用这一特性可制得具有高催化活性和产物选择性的催化剂。,光催化剂:以光线(如紫外线)为驱动源,增进物体氧化还原的物质。,49,光催化剂(TiO2)受到光线(紫外线)照射,会产生表面电子空穴效应,使大气存在的H2O分解为-OH(游离基)及H(氢),其-OH(游离基)会与有机化合物起氧化反应,致使有机化合物改变特性。一般的细菌(霉菌、病毒)及臭味主要结构均为有机化合物,故此能除臭抗菌/抗病毒。,超微颗粒的表面结构与大块物体的表面结构是不一样的。若用高倍电子显微镜对金超微颗粒(直径为210-3微米)进行电视摄像,实时观察发现这些颗粒没有固定的形态,随着时间的变化会自动形成各种形状(如立方八面体、十面体、二十面体多孪晶等),它既不同于一般固体,又不同于液体,是一种准固体。在电子显微镜的电子束照射下,表面原子仿佛进入了“沸腾”状态,尺寸大于10纳米后才看不到这种颗粒结构的不稳定性,这时微颗粒具有稳定的结构状态。超微颗粒的表面具有很高的活性,在空气中金属颗粒会迅速氧化而燃烧。如要防止自燃,可采用表面报复或有意识地控制氧化速率,使其缓慢氧化生成一层极薄而致密的氧化层,确保表面稳定化。利用表面活性,金属超微颗粒可望成为新一代的高效催化剂和贮气材料以及低熔点材料。,50,量子尺寸效应,当粒子的尺寸降到一定值时,金属费米能级附近的电子能级由准连续变为分离(离散)能级的现象、纳米半导体微粒存在不连续的最高被占据分子轨道和最低未被占据的分子轨道能级和能隙变宽现象均称为量子尺寸效应。,电子密度状态,当电子被局限在一个很小的纳米尺度空间,电子传输运动受限制,平均自由程变得很短,粒子波动相干性增强,晶体周期性边界条件不再成立,传统的晶相学已不再必然。此外,当材料内部空间尺度(DimensionLength)变小,纳米系统中的电子数大大降低,宏观世界中固定的准连续能带消失了,而表现出分立的能阶,产生了新能态(NewStates)。,51,能带理论认为,金属费米能级附近电子能级一般是连续的,但前提是高温或宏观尺寸的情况下,对于只有有限个电子的超微粒子来说,低温下能级是离散的。对于宏观物体包含无限个原子(即导电电子数N),由久保有关能级间距的公式:知,(能级间距)0,即对于大粒子或宏观物体能级间距几乎为零,能级是连续的;而对纳米微粒,所包含原子数有限,N(原子数)值很小,值有一定值,即能级间距发生分裂。当能级间距大于热能、磁能,光子能量或超导态的凝聚能时,必须要考虑量子尺寸效应。纳米材料的量子尺寸效应即处于分离量子化能级中的电子的波动性带来了纳米材料一系列的特殊性质。如用久保有关能级间距的公式可以估算出Ag微粒在1K时出现量子尺寸效应(由导体绝缘体)的临界粒径da,Ag的电子密度n1=61022cm-3,由公式和可求得d=20nm,即纳米Ag微粒粒径等于20nm,且T=1K时,银变为非金属绝缘体。如果T不等于1K,则要求d20nm才有可能变为绝缘体。,52,纳米材料的量子尺寸效应使纳米材料具有:高度光学非线性;特异性催化和光催化性;强氧化性与强还原性利用这一特性可制得光催化剂、强氧化剂和强还原剂。可使用于制备无机抗菌材料。,53,一些微观粒子具有粒子性又具有波动性,因此具有贯穿势垒的能力,称为隧道效应。隧道效应是由于粒子的波动性而引起的,只有在一定的条件下,隧道效应才会显著。经计算,投射系数T为:,宏观量子隧道效应,由式(1)可见,T与势垒宽度a,能量差(V0-E)以及粒子的质量m有着很敏感的关系。随着势垒厚(宽)度a的增加,T将指数衰减,因此在一般的宏观实验中,很难观察到粒子隧穿势垒的现象。,54,科学家们发现,一些宏观量如微颗粒的磁化强度、量子相干器件中的磁通量以及电荷等也具有隧道效应,它们可以贯穿宏观系统的势垒而产生变化,故称为宏观量子隧道效应。这一效应与量子尺寸效应一起,确定了微电子器件进一步微型化的极限。,55,纳米材料在锂离子电池电极材料中的应用,56,纳米材料在锂离子电池电极材料中的应用,锂离子电池充放电反应可表示为:正极反应LiCoO2CoO2+Li+e负极反应Li+e+C6LiC6电池反应LiCoO2+C6CoO2+LiC6,57,正极极材料,2009-2010,58,LiFePO4正极材料,SEM,59,锂离子电池负极材料,目前负极材料研究热点:过渡金属氧化物、磷化物,2009-2010,60,CuO负极材料,10min,20min,20min,61,Ni-P负极材料,62,1、生产与生活,把透明疏油、疏水的纳米材料颗粒组合在大楼表面或窗玻璃上,大楼不会被空气中的油污弄脏,玻璃也不会沾上水蒸气而永远透明。将这种纳米颗粒放到织物纤维中,做成的衣服不沾尘,省去不少洗衣的麻烦。,五、纳米技术的应用及前景,纳米陶瓷材料,具有化学性质稳定、韧性好、耐磨性好、硬度高及密度小等优点。用纳米陶瓷材料可制得“摔不碎的酒杯”或“摔不碎的碗”。,63,2、医学与健康,纳米粒子微细结构使其对环境中的化学或物指标的变化极为敏感,因此可对人体内的病原体作出早预测,如,当肿瘤只有几个细胞大小时就可以将其检测出来,加以根除。,研究表明,矿物中药制成纳米粉末后,药效大幅度提高,并具有高吸收率、剂量小的特点;还可利用纳米粉末的强渗透性将矿物中药制成贴剂或含服剂,避开胃肠吸收时体液环境与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年南阳市选调公务员考试真题汇编附答案解析
- 2025年重型机械制造项目可行性研究报告
- 奥运体育项目介绍与运动技巧
- 应急救援物资储备与分配岗位招聘实战指南
- 2025年Blockchain数据存储安全项目可行性研究报告
- 2025云南机场集团有限责任公司旗下智航(云南)信息产业有限公司招聘5人考试参考题库含答案解析(夺冠)
- 2025年学校智能教学系统建设可行性研究报告
- 2023年玉树州直遴选笔试真题汇编附答案解析(夺冠)
- 2023年合肥市直机关遴选公务员笔试真题汇编含答案解析(夺冠)
- 2025年三明市直属机关遴选公务员笔试真题汇编及答案解析(夺冠)
- 公司组织架构优化方案设计及实施步骤
- 国家农业信贷担保联盟招聘真题及答案
- 全国网络安全行业职业技能大赛(网络安全管理员)考试题及答案
- 2025贵州水投水务集团有限公司面向社会招聘笔试笔试历年参考题库附带答案详解
- 洗煤厂租赁合同协议书
- 品管圈QCC成果汇报之降低用药错误发生率
- 2025年江苏事业编 真题及答案
- 交管12123学法减分考试题库
- 代理记账税务培训
- 2024-2025学年河南省洛阳市九师联盟高一上学期12月月考化学试题
- (2024)北师大版三年级数学上册综合实践第3课时 一天有多长课件
评论
0/150
提交评论