信息技术应用估计√2的值 (6).ppt_第1页
信息技术应用估计√2的值 (6).ppt_第2页
信息技术应用估计√2的值 (6).ppt_第3页
信息技术应用估计√2的值 (6).ppt_第4页
信息技术应用估计√2的值 (6).ppt_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

举行数列学习旅行,跟随合肥17中西江、斐波那契步伐的数学是?学数学有什么用?如何学习数学?前导、相应的数字1、1、2、3、5、()、13、有拼图1,n个楼梯。一次只过一两个阶段,问:上楼的方法有几种?印度数学家高帕拉首先提出的是当盒子包装物品正好是1和2时,研究方法数的同时,抽象出了这个问题。拼图2,我们假设兔子出生后两个月有繁殖能力,一对兔子每月能生一对兔子。第一个月,我们有一对兔子,如果所有兔子都不死,每月研究兔子数量会发现什么?拼图3,拼图3,宝贝代数=上个月兔子代数=上个月兔子代数上个月代数上个月代数上个月代数=上个月圣兔子代数上个月代数上个月代数=上个月整个代数上个月整体代数(月数不小于3),拼图3,斐波那契数列发明人,意大利数学家莱昂纳多斐波那契他被称为比萨的莱昂纳多。1202年,他写了一本书,名为算盘全书。他是第一个研究印度和阿拉伯数学理论的欧洲人。他的父亲被比萨一个商业团体聘请为外交领事,他位于今天阿尔及利亚地区的相应位置,莱昂纳多可以在一位阿拉伯教师的指导下研究数学。他还在埃及、叙利亚、希腊、西西里、普罗旺斯等地学习了数学。拼图3,与黄金法则的关系,拼图4,拼图。与杨辉三角形的关系,谜题6,松果的秘密:松果有8条顺时针生长线和13条逆时针生长线,8: 13引出有趣的比例1:1.625;这说明什么?向日葵和松果一样,每颗种子属于两个螺旋,21个顺时针螺旋和34个逆时针螺旋形成的比率是1: 1.619,向日葵花板上的籽数为什么是这样的定律呢?科学家们直到1992年才提出更满意的解释,法国数学家伊夫库德和斯特凡尼推阿迪,斐波那契数的这种排列能制造出花顶的种子最多。13岁的少年AidanDwye根据斐波那契数列发明了太阳能电池树,结果比太阳能电池阵列多20%-50%的电力。aidandwye观察树枝分叉,发现其分布模式类似于斐波那契数,这是自然进化的结果,有助于树叶的光合作用。所以为什么AidanDwye没有按照斐波那契数排列太阳能电池?他设计了太阳能电池树,发现它的出口功率增加了20%,每天接收光线的时间延长了2.5个小时。物理学(氢原子水平问题)、波动理论和股市、建筑、太阳电池树、摇椅、算法(斐波那契堆、欧氏算法的时间复杂性)等。生活案例,自然现象,数学模型,数学性质,反馈生命,抽象,推理

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论