




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
函数的单调性和奇偶性一、目标认知学习目标: 1.理解函数的单调性、奇偶性定义;2.会判断函数的单调区间、证明函数在给定区间上的单调性;3.会利用图象和定义判断函数的奇偶性;4.掌握利用函数性质在解决有关综合问题方面的应用.重点、难点: 1.对于函数单调性的理解;2.函数性质的应用.二、知识要点梳理1.函数的单调性(1)增函数、减函数的概念一般地,设函数f(x)的定义域为A,区间如果对于M内的任意两个自变量的值x1、x2,当x1x2时,都有f(x1)f(x2),那么就说f(x)在区间M上是增函数;如果对于M内的任意两个自变量的值x1、x2,当x1x2时,都有f(x1)f(x2),那么就说f(x)在区间M上是减函数.如果函数f(x)在区间M上是增函数或减函数,那么就说函数f(x)在区间M上具有单调性,M称为函数f(x)的单调区间.要点诠释:1“任意”和“都”;2单调区间与定义域的关系-局部性质;3单调性是通过函数值变化与自变量的变化方向是否一致来描述函数性质的;4不能随意合并两个单调区间.(2)已知解析式,如何判断一个函数在所给区间上的单调性?基本方法:观察图形或依据定义.2.函数的奇偶性偶函数:若对于定义域内的任意一个x,都有f(-x)=f(x),那么f(x)称为偶函数.奇函数:若对于定义域内的任意一个x,都有f(-x)=-f(x),那么f(x)称为奇函数.要点诠释:1奇偶性是整体性质;2x在定义域中,那么-x在定义域中吗?-具有奇偶性的函数,其定义域必定是关于原点对称的;3f(-x)=f(x)的等价形式为:, f(-x)=-f(x)的等价形式为:;4由定义不难得出若一个函数是奇函数且在原点有定义,则必有f(0)=0;5若f(x)既是奇函数又是偶函数,则必有f(x)=0;6, .三、规律方法指导1.证明函数单调性的步骤: (1)取值.设是定义域内一个区间上的任意两个量,且;(2)变形.作差变形(变形方法:因式分解、配方、有理化等)或作商变形;(3)定号.判断差的正负或商与1的大小关系;(4)得出结论.2.函数单调性的判断方法: (1)定义法;(2)图象法;(3)对于复合函数,若在区间上是单调函数,则在区间或者上是单调函数;若与单调性相同(同时为增或同时为减),则为增函数;若与单调性相反,则为减函数.3.常见结论: (1)若是增函数,则为减函数;若是减函数,则为增函数;(2)若和均为增(或减)函数,则在和的公共定义域上为增(或减) 函数;(3)若且为增函数,则函数为增函数,为减函数; 若且为减函数,则函数为减函数,为增函数.(4)若奇函数在上是增函数,且有最大值,则在是增函数,且有最小值 ;若偶函数在是减函数,则在是增函数.经典例题透析类型一、函数的单调性的证明1.证明函数上的单调性. 证明:总结升华:1证明函数单调性要求使用定义;2如何比较两个量的大小?(作差)3如何判断一个式子的符号?(对差适当变形)举一反三:【变式1】用定义证明函数上是减函数.总结升华:可以用同样的方法证明此函数在上是增函数;在今后的学习中经常会碰到这个函数,在此可以尝试利用函数的单调性大致给出函数的图象.类型二、求函数的单调区间2. 判断下列函数的单调区间; (1)y=x2-3|x|+2; (2)举一反三:【变式1】求下列函数的单调区间:(1)y=|x+1|; (2)总结升华:1数形结合利用图象判断函数单调区间;2关于二次函数单调区间问题,单调性变化的点与对称轴相关.3复合函数的单调性分析:先求函数的定义域;再将复合函数分解为内、外层函数;利用已知函数的单调性解决.关注:内外层函数同向变化复合函数为增函数;内外层函数反向变化复合函数为减函数.类型三、单调性的应用(比较函数值的大小,求函数值域,求函数的最大值或最小值) 3. 已知函数f(x)在(0,+)上是减函数,比较f(a2-a+1)与的大小. 4. 求下列函数值域: (1); 1)x5,10; 2)x(-3,-2)(-2,1);(2)y=x2-2x+3; 1)x-1,1; 2)x-2,2.举一反三:【变式1】已知函数.(1)判断函数f(x)的单调区间;(2)当x1,3时,求函数f(x)的值域.思路点拨:这个函数直接观察恐怕不容易看出它的单调区间,但对解析式稍作处理,即可得到我们相对熟悉的形式.,第二问即是利用单调性求函数值域.5. 已知二次函数f(x)=x2-(a-1)x+5在区间上是增函数,求:(1)实数a的取值范围;(2)f(2)的取值范围. 类型四、判断函数的奇偶性6. 判断下列函数的奇偶性: (1) (2)(3)f(x)=x2-4|x|+3 (4)f(x)=|x+3|-|x-3| (5)(6) (7)思路点拨:根据函数的奇偶性的定义进行判断.举一反三:【变式1】判断下列函数的奇偶性:(1); (2)f(x)=|x+1|-|x-1|; (3)f(x)=x2+x+1;(4).思路点拨:利用函数奇偶性的定义进行判断.举一反三:【变式2】已知f(x),g(x)均为奇函数,且定义域相同,求证:f(x)+g(x)为奇函数,f(x)g(x)为偶函数.类型五、函数奇偶性的应用(求值,求解析式,与单调性结合) 7.已知f(x)=x5+ax3-bx-8,且f(-2)=10,求f(2). 8. f(x)是定义在R上的奇函数,且当x0时,f(x)=x2-x,求当x0时,f(x)的解析式,并画出函数图象. 9. 设定义在-3,3上的偶函数f(x)在0,3上是单调递增,当f(a-1)f(a)时,求a的取值范围. 类型六、综合问题10.定义在R上的奇函数f(x)为增函数,偶函数g(x)在区间的图象与f(x)的图象重合, 设ab0,给出下列不等式,其中成立的是_.f(b)-f(-a)g(a)-g(-b); f(b)-f(-a)g(a)-g(-b);f(a)-f(-b)g(b)-g(-a); f(a)-f(-b)g(b)-g(-a).11. 求下列函数的值域: (1) (2) (3)思路点拨:(1)中函数为二次函数开方,可先求出二次函数值域;(2)由单调性求值域,此题也可换元解决;(3)单调性无法确定,经换元后将之转化为熟悉二次函数情形,问题得到解决,需注意此时t范围.解: 12. 已知函数f(x)=x2-2ax+a2-1. (1)若函数f(x)在区间0,2上是单调的,求实数a的取值范围;(2)当x-1,1时,求函数f(x)的最小值g(a),并画出最小值函数y=g(a)的图象.13. 已知函数f(x)在定义域(0,+)上为增函数,f(2)=1,且定义域上任意x、y都满足f(xy)=f(x)+f(y),解不等式:f(x)+f(x-2)3. 14. 判断函数上的单调性,并证明. 证明: 15. 设a为实数,函数f(x)=x2+|x-a|+1,xR,试讨论f(x)的奇偶性,并求f(x)的最小值. 解: 学习成果测评基础达标一、选择题1下面说法正确的选项( )A函数的单调区间就是函数的定义域B函数的多个单调增区间的并集也是其单调增区间C具有奇偶性的函数的定义域定关于原点对称D关于原点对称的图象一定是奇函数的图象2在区间上为增函数的是( )A B C D3已知函数为偶函数,则的值是( )A. B. C. D. 4若偶函数在上是增函数,则下列关系式中成立的是( )ABCD5如果奇函数在区间 上是增函数且最大值为,那么在区间上是( )A增函数且最小值是 B增函数且最大值是C减函数且最大值是 D减函数且最小值是6设是定义在上的一个函数,则函数,在上一定是( )A奇函数 B偶函数 C既是奇函数又是偶函数 D非奇非偶函数.7下列函数中,在区间上是增函数的是( )A B C D8函数f(x)是定义在-6,6上的偶函数,且在-6,0上是减函数,则( )A. f(3)+f(4)0 B. f(-3)-f(2)0 C. f(-2)+f(-5)0 D. f(4)-f(-1)0二、填空题1设奇函数的定义域为,若当时, 的图象 如右图,则不等式的解是_.2函数的值域是_.3已知,则函数的值域是_.4若函数是偶函数,则的递减区间是_.5函数在R上为奇函数,且,则当,_.三、解答题1判断一次函数反比例函数,二次函数的单调性.2已知函数的定义域为,且同时满足下列条件:(1)是奇函数;(2)在定义域上 单调递减;(3)求的取值范围.3利用函数的单调性求函数的值域;4已知函数. 当时,求函数的最大值和最小值; 求实数的取值范围,使在区间上是单调函数.能力提升一、选择题1下列判断正确的是( )A函数是奇函数 B函数是偶函数C函数是非奇非偶函数 D函数既是奇函数又是偶函数2若函数在上是单调函数,则的取值范围是( ) A B CD3函数的值域为( )A B CD4已知函数在区间上是减函数,则实数的取值范围是( )A B C D5下列四个命题:(1)函数在时是增函数,也是增函数,所以是增函数;(2)若 函数与轴没有交点,则且;(3) 的递增区间为;(4) 和表示相等函数.其中正确命题的个数是( )A B C D6定义在R上的偶函数,满足,且在区间上为递增,则( )A B C D二、填空题1函数的单调递减区间是_.2已知定义在上的奇函数,当时,那么时,_.3若函数在上是奇函数,则的解析式为_.4奇函数在区间上是增函数,在区间上的最大值为8,最小值为-1, 则_.5若函数在上是减函数,则的取值范围为_.三、解答题1判断下列函数的奇偶性(1) (2)2已知函数的定义域为,且对任意,都有,且当时,恒成立,证明:(1)函数是上的减函数;(2)函数是奇函数. 3设函数与的定义域是且,是偶函数, 是奇函数,且,求和的解析式.4设为实数,函数,.(1)讨论的奇偶性;(2)求的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025布艺产品研发、生产、销售及品牌授权合同
- 2025年金属氧化物买卖合同书样本
- 2025版新型消费金融借款利息调整协议
- 2025版高科技设施维护保养服务合同范本
- 2025年度土地租赁与买卖合同范本
- 2025版智能穿戴设备入股合伙协议书
- 贵州省思南县2025年上半年公开招聘城市协管员试题含答案分析
- 时尚搭配服装赛事方案
- 身体符号化空间-洞察及研究
- 2025年审计师初级面试核心题及答案
- 小学数学教师业务水平考试试题
- 安全文明施工措施费支付申请表实用文档
- 杨式85式太极拳现用图解
- 汽车电控发动机构造与维修(第三版)
- YY/T 1095-2015肌电生物反馈仪
- GB/T 328.13-2007建筑防水卷材试验方法第13部分:高分子防水卷材尺寸稳定性
- GB/T 2480-2022普通磨料碳化硅
- 茶叶实践报告3篇
- 细胞生物学实验课件:细胞组分的分级分离
- 胸腔穿刺术thoracentesis课件
- 合理选择影像检查方法课件
评论
0/150
提交评论