工程图学课件-2-正投影基础_第1页
工程图学课件-2-正投影基础_第2页
工程图学课件-2-正投影基础_第3页
工程图学课件-2-正投影基础_第4页
工程图学课件-2-正投影基础_第5页
已阅读5页,还剩92页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二章正投影基础,1投影法,物体在光源的照射下会出现影子。,投影的方法就是从这一自然现象抽象出来,并随着科学技术的发展而发展起来的。,常用的投影法有两大类:中心投影法和平行投影法。,B,A,C,规定大写字母表示空间点;小写字母表示相应空间点的投影。,中心投影法:投射线均通过投射中心。,投影特性:如改变ABC与投射中心或投影面之间的距离,则其投影abc的大小也随之改变,度量性较差。,在投射中心确定的情况下,空间的一个点在投影面上只存在唯一一个投影。,1.1中心投影法,如果把中心投影法的投射中心移至无穷远处,则各投射线成为相互平行的直线,这种投影法称为平行投影法。,正投影法投射方向S垂直于投影面H,1.2平行投影法,斜投影法投射方向S倾斜于投影面H,平行投影的投影特性:,投影大小与物体和投影面之间的距离无关。度量性较好。,工程图样大多数采用平行投影法的正投影法。,1.同素性2.从属性不变3.平行性不变4.简单比不变5.相仿性,1.3平行投影的基本性质,特殊情况下:积聚性、全等性。,点的投影是点,直线的投影一般仍是直线。,1.3.1同素性,若点在直线上,则该点的投影一定在该直线的投影上。,1.3.2从属性不变,即C在AB上,则c在ab上。,两平行直线的投影一般仍平行。,AB/CD=ab/cd,1.3.3平行性不变,一条直线上任意三个点的简单比是平行投影的不变量。,AC/BC=ac/bc,1.3.4简单比不变,一般情况下,平面形的投影都要发生变形,但投影形状总与原形相仿,即平面投影后,与原形的对应线段保持定比性,表现为投影形状与原形的边数相同、平行性相同、凸凹性相同及边的直线或曲线性质不变。,1.3.5相仿性,伸缩系数k:投影长与线段原长之比。,k=ab/AB=cos,特殊情况下,平行投影还具有以下性质。,当直线平行于投射方向S时,直线的投影为点;当平行图形平行于投射方向S时,其投影为直线。,1.积聚性,当线段平行于投影面H时,其投射长度反映线段的实长;当平面图形平行于投影面H时,其投影与原平面图形全等。,2.全等性,仅有点的一个投影不能确定点的空间位置。,2点的投影,如何解决?,需要增加投影面。,点是最基本的几何元素,下面用点的投影说明正投影的规律。,为了确定几何元素的空间位置,需要建立正投影的投影面体系。,2.1投影面体系与投影轴,三投影面体系:,用三个相互垂直的投影面构成投影面体系。,正面投影面(V面),水平投影面(H面),侧面投影面(W面),VH=OX轴,VW=OZ轴,HW=OY轴,两投影面相交,其交线称为投影轴:,三投影面体系:,2.2.1点的投影,规定:空间点用大写字母表示,点的三个投影都用同一个小写字母表示。其中H投影不加撇,V投影加一撇,W投影加两撇。,Z,W,V,H,2.2点的投影及影射规律,X,Z,投影面展开,Y,O,V,H,W,A,a,a,a,向右翻,向下翻,不动,在投影时,投影的大小不受限制,通常不必画出投影面的边框。,2、V、W两投影都反映高标,且投影连线垂直Z轴;aaOZ轴。,2.2.2点的投影规律,Z,a,a,X,YH,YW,a,1、V、H两投影都反映横标,且投影连线垂直X轴;aaOX轴。,其中W面上的一段垂直OYW,H面上的一段垂直OYH,中间可用折线、45。斜线或以O为圆心的圆弧联系起来。,3、H、W两投影都反映纵标,投影连线是一条折线。,O,aax=aaz=y=A到V面的距离,aax=aay=z=A到H面的距离,aay=aaz=x=A到W面的距离,1、点的投影连线垂直于相应的投影轴。,2、点的投影到投影轴的距离等于空间点到投影面的距离。,小结:,X,Z,Y,O,V,H,W,A,a,a,a,c,例1已知点C的两个投影c和c,求作其水平投影c。,c,cz,通过作45转宽线使ccz=ccx,X,Z,YH,Yw,o,点的每个投影反映两个坐标:V投影反映高标和横标(aaX和aaZ),H投影反映纵标和横标(aaX和aaYH),W投影反映高标和纵标(aaYW和aaZ)。,2.3点的投影和坐标,2.4.1一般位置点(X、Y、Z),1)投影面上的点:V面上点(X、0、Z)H面上点(X、Y、0)W面上点(0、Y、Z),3)原点上的点:(0、0、0),2)投影轴上点:,X轴上点(X、0、0)Y轴上点(0、Y、0)Z轴上点(0、0、Z),注意:点的各个投影一定要写在它所属的投影面区域内。,2.4各种位置点的投影,2.4.2特殊位置点,各种位置点的投影,两点的相对位置指两点在空间的上下、前后、左右位置关系。,判断方法:,X坐标大的在左,Y坐标大的在前,Z坐标大的在上,2.5.1两点的相对位置,2.5两点的相对位置和重影点,作图步骤:,1)在a左方12mm,上方8mm处确定b;,2)作bbOX轴,且在a前10mm处确定b;,3)按投影关系求得b。,例2如图,已知点A的三投影,另一点B在点A上方8mm,左方12mm,前方10mm处,求:点B的三个投影。,ay,ay,Z,a,a,ax,az,X,YH,YW,O,a,当空间两点位于对投影面的同一条投影线上时,这两点在该投影面上的投影重合,称这两点为对该投影面的重影点。,2.5.2重影点,点A、B在对H面的同一条投射线上,它们在H面的投影重合,称为对H面的重影点。而点C、A则称为对W面的重影点。,2.6.1点的一次换面,A点的两个投影a,a,A点的两个投影:a,a1,(1)换V面,2.6点的换面,X,V,H,A,a,a,ax,V,H,X,a,a,ax,o,V,H,A,a,ax,X,X1,a1,ax1,新旧投影之间的关系,a,2)点的新投影到新投影轴的距离等于被代替的投影到原投影轴的距离。a1ax1=aax,一般规律:,1)点的新投影和与它有关的原投影的连线,必垂直于新投影轴。aa1X1,V1,V,H,X,a,a,ax,ax1,O,O1,(2)换H面,ax1,O,求新投影的作图方法:,由点的不变投影向新投影轴作垂线,并在垂线上量取一段距离,使这段距离等于被代替的投影到原投影轴的距离。,作图规律:,2.6.2点的两次换面,新投影体系的建立,A,a,V,H,a,ax,X,按次序更换,求新投影的作图方法,a,a,X,V,H,作图规律:a2a1X2轴;a2ax2=aax1,ax,二次换面作图步骤:,1)定出新投影轴O1X1;,2)根据点的换面规律,求出新投影a1;,3)作新投影轴O2X2;,4)根据点的换面规律,求出新投影a2;,5)a2即为变换后的新投影。,o,3直线的投影,一般情况下,直线的投影仍为直线。两点确定一条直线,将直线上两点的同面投影用直线连接起来,就得到直线的三个投影。,3.1直线的投影,X,Z,YH,YW,o,直线的投影规定用粗实线绘制。,3.2各种位置直线,投影面平行线,投影面垂直线,正平线(平行于面),侧平线(平行于面),水平线(平行于面),正垂线(垂直于面),侧垂线(垂直于面),铅垂线(垂直于面),一般位置直线,统称特殊位置直线,3.2.1一般位置直线,直线与H、V和W三投影面的夹角分别用、表示。投影长分别是:,ab=ABcosab=ABcosab=ABcos,一般位置直线投影特性,各投影的长度均小于直线本身的实长。,直线的各投影均不平行于各投影轴。,Z,YW,水平线,YH,3.2.2投影面平行线,1)在其平行的那个投影面上的投影反映实长,并反映直线与另两投影面的真实倾角。,2)另两个投影面上的投影平行于相应的投影轴。,侧平线,正平线,投影特性,与H面的夹角:与V面的夹角:与W面的夹角:,投影面平行线,3.2.3投影面垂直线,(2)另外两个投影,反映线段实长,且垂直于相应的投影轴。,(1)在其垂直的投影面上,投影有积聚性。,投影特性,投影面垂直线,3.3.1点和直线的从属关系,3.3直线上的点,若点在直线上,则点的各个投影必在直线的同面投影上。如图所示,CAB,则有cab,cab,cab。,反之,如果点的各个投影均在直线的同面投影上,则点在直线上。,从属性,在图中,C点在直线AB上,而D、E两点均不满足上述条件,所以都不在AB直线上。,Z,例1判断点C是否在线段AB上。,a,b,因c不在ab上,故点C不在AB上。,应用简单比定理,a,b,c,a,b,c,另一判断法?,X,o,YH,YW,3.3.2点分割线段成定比,AC/CB=ac/cb=ac/cb,直线上的点分割线段之比等于其投影之比。即:,定比定理,例试在AB线段上取一点C,使ACCB12,求:分点C的投影。,a,b,c,a,b,c,X,C1,B1,分点C的投影,必在AB线段的同面投影上,且accbaccb12可用比例作图法作图。,1)过a(或b)任作一直线aB1(或bB1);,5)过c作X轴的垂线与ab交于c。则c、c即所求分点C的投影。,2)在aB1上取C1,使aC1C1B112;,3)连接B1、b;,4)过C1作C1cB1b,与ab交于c;,作图步骤:,分析:,e,k,f,e,f,X,例已知直线EF及点K的二投影,试判断:点K是否在直线EF线上。,作图步骤:,应用简单比定理,E1,k1。,k,1)在H投影上,过f(或e)任作一条直线fE1;2)在fE1上取fK1=fk,K1E1=ke;3)连接E1e,过K1作直线平行于E1e,与fe交于k1;,因为已知投影k与k1不重合,所以点K不在直线EF上。,.K1,空间两直线的相对位置分为:平行、相交、相错。,1、两直线平行,投影特性:,空间两直线平行,则其各同面投影必相互平行,反之亦然。,3.4两直线的相对位置,例4判断图中两条直线是否平行。,对于一般位置直线,只要有两个同面投影互相平行,空间两直线就平行。,AB/CD,b,d,c,a,c,b,a,d,d,b,a,c,对于特殊位置直线,只有两个同面投影互相平行,空间直线不一定平行。,求出侧面投影后可知:,AB与CD不平行。,例5判断图中两条直线是否平行。,X,o,YH,YW,2、两直线相交,判别方法:,若空间两直线相交,则其同面投影必相交,且交点的投影必符合空间一点的投影规律。,交点是两直线的共有点,相交两直线的三面投影:,若空间两直线相交,则其同面投影必相交,且交点的投影必符合空间一点的投影规律。反之,若两直线的各同面投影相交,且交点符合一个点的投影规律,则此两直线在空间一定相交。,2,1,d,b,a,a,b,c,d,c,3(4),2(1),X,、是对H面的重影点,、是对V面的重影点。,3、两直线相错,3.5直线的换面,3.5.1一次换面,1.把一般位置直线变换为新投影面平行线,能反映直线的实长和对投影面的倾角。,X1,a,b,a,b,X,V,H,H,V,A,B,a,b,a,b,换H面行吗?,不行!,作图:,新投影轴的位置?,与ab平行。,例1求直线AB的实长及与H面的夹角。,空间分析:,用V1面代替V面,在V1/H投影体系中,AB/V1。,X,O,例2已知直线AB的两投影ab、ab,试求直线AB的实长和对V面的夹角。,a,b,a,b,X,V,H,O,把投影面平行线变换为投影面垂直线,是为了使直线投影成为一个点,从而解决与直线有关的度量问题(如求两直线间的距离)和定位问题(如求线面交点)。,2.把投影面平行线变换为新投影面的垂直线,例3已知水平线AB的两投影,试把它变为投影面垂直线。,例4已知正平线AB的两投影,试把它变为投影面垂直线。,3.5.2两次换面,把一般位置直线变换为投影面垂直线,只经过一次换面是不能实现的,因为垂直于一般位置直线的平面是一般位置平面,它与原有的两个投影面均不垂直,不能构成正投影体系,所以需要经过两次换面。第一次:将一般位置直线变为新投影体系中的投影面平行线。第二次:将投影面平行线变为另一投影体系中的投影面垂直线。,作图:,先变换V面然后再换H面:,V,H,a,a,X,B,b,b,A,例5把一般位置直线变换为投影面垂直线,例6已知直线AB的V投影和端点A的H投影,其实长为30mm,试完成该直线的H投影。,分析:由于一次换面可把一般位置直线变换为投影面平行线,利用已知直线AB=30,先求出新投影a1b1,然后再返回求出其旧投影ab。,X,V,H,a,ax,bx,O,a,b,a1,30,1)在V面适当位置作O1X1ab;,作图步骤:,2)求得点A的H1投影a1;,3)以a1为圆心,以为30mm半径画圆弧,与过b垂直于O1X1的直线交于两点b11、b21,连a1b11,a1b21,即为实长;,4)过b作直线垂直于OX轴,并量取b1bx=b11bx1,b2bx=b21bx1,连ab1、ab2,即为所求(两个解答)。,4.1平面的表示法,不在同一直线上的三个点,直线及线外一点,两平行直线,两相交直线,平面图形,4.1.1用几何元素表示平面,4平面的投影,4.1.2用平面的迹线表示平面,平面和投影面的交线,称为平面的迹线。,平面和H面的交线,称为水平迹线PH,和V面的交线,称为正面迹线PV,和W面的交线,称为侧面迹线PW。,两相交迹线,两平行迹线,迹线上的点:,根据迹线的投影规律可知:点A、B位于平面P上,而点C、D则不在平面P上。,投影面垂直面,投影面平行面,一般位置平面,4.2各种位置平面,平面对于三投影面的位置可分为三类:,4.2.1一般位置平面,一般位置平面和三个投影面既不垂直也不平行,与三个投影面都倾斜,所以,如用平面形(例如三角形)表示一般位置平面,则它的三个投影均不是实形,但具有相仿性。,4.2.2投影面垂直面,只垂直于一个投影面的平面,称为投影面垂直面。,根据其所垂直的投影面不同,可以分为三种:1)铅垂面垂直于H面;2)正垂面垂直于V面;3)侧垂面垂直于W面。,a,b,c,a,c,b,c,b,a,X,Z,o,YH,YW,投影面垂直面,1)在其所垂直的投影面上,投影为斜直线,有积聚性;该斜直线与投影轴的夹角反映该平面对相应投影面的倾角;2)如用平面图形表示平面,则在另外两个投影面上的投影不是实形,但有相仿性。,铅垂面,相仿性,相仿性,积聚性,投影面垂直面的投影特性是:,1)H投影为斜直线,有积聚性,且反映、大小2)V、W投影不是实形,但有相仿性。,1)V投影为斜直线,有积聚性,且反映、大小2)H、W投影不是实形,但有相仿性。,1)W投影为斜直线,有积聚性,且反映、大小2)H、V投影不是实形,但有相仿性。,用迹线表示投影面平行面和投影面垂直面:,4.2.3投影面平行面,垂直于两个投影面的平面,平行于第三个投影面。,根据其所平行的投影面不同,投影面平行面也可分为三种:1)水平面平行于H面;2)正平面平行于V面;3)侧平面平行于W面。,a,b,c,a,b,c,a,b,c,X,Z,o,YH,YW,投影面平行面,投影面平行面的投影特性是:1)如平面用平面形表示,则其在所平行的投影面上的投影,反映平面形的实形;2)在另外两个投影面上的投影均为直线段,有积聚性,且平行于相应的投影轴。,水平面,积聚性,积聚性,实形,名称,立体图,投影图,投影特性,水平面(H),正平面(V),侧平面(W),1)H投影反映实形;2)V、W投影分别为平行OX、OYW轴的直线段,有积聚性,1)V投影反映实形;2)H、W投影分别为平行OX、OZ轴的直线段,有积聚性,1)W投影反映实形;2)V、H投影分别为平行OZ、OYH轴的直线段,有积聚性,4.3平面上的直线和点,点在平面上的条件:如果点在平面上的某一直线上,则此点必在该平面上。,4.3.1平面内的点,直线在平面上的条件:通过平面上的两个点或通过平面上的一个点且平行于平面上的一条直线。,4.3.2平面内的直线,1),a,b,c,a,b,c,过平面内两已知点作辅助线求解,X,2),a,b,c,a,b,c,过平面内一个已知点作平面内已知直线的平行线求解,X,例1已知平面ABC内一点K的H投影k,试求K点的V投影k。,0,0,3),a,b,c,a,b,c,过平面内一个已知点作投影面的平行线求解,X,例1已知平面ABC内一点K的H投影k,试求K点的V投影k。,例2已知四边形平面ABCD的H投影abcd和ABC的V投影abc,试完成其V投影。,1)连接ac和ac得辅助线AC的两投影;,d,a,c,b,d,b,a,c,X,2)连接bd交ac于e;,3)由e在ac上求出e;,4)连接be,在be上求出d;,5)分别连接ad;及cd,即为所求。,e,e,PV,PH,a,b,X,a,b,例3已知铅垂面P内一条水平线AB的端点A的两投影,且AB=20mm,求直线AB的两投影。,分析:铅垂面P的H投影有积聚性,铅垂面P内点和直线的H投影,必重合于PH迹线上,而直线AB为水平线,故其H投影反映实长。,作图步骤:,1)在迹线PH上,过a量取ab=20mm

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论