




已阅读5页,还剩31页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
4.4PropertiesofRelations关系的性质,Inmanyapplicationstocomputerscienceandappliedmathematics,wedealwithrelationsonasetAratherthanrelationsfromAtoB.Moreover,theserelationsoftensatisfycertainpropertiesthatwillbediscussedinthissection.,1.ReflexiveandIrreflexiveRelations,(a).ArelationRonasetAisreflexive(自反的)if(a,a)RforallaA,thatis,ifaRaforallaA.(b).ArelationRonasetAisirreflexive(非自反的)ifaaforeveryaA.ThusRisreflexiveifeveryelementaAisrelatedtoitselfanditisirreflexiveifnoelementisrelatedtoitself.,Example1:Let=(a,a)|aA,sothatistherelationofequalityonthesetA.Thenisreflexive,since(a,a)forallaA.LetR=(a,b)AA|ab,sothatRistherelationofinequalityonthesetA.ThenRisirreflixive,since(a,a)RforallaA.,(c)LetA=1,2,3,andletR=(1,1),(1,2).ThenRisnotreflexivesince(2,2)Rand(3,3)R.Also,Risnotirreflexive,since(1,1)R.(d)LetAbeanonemptyset.LetR=AA,theemptyrelation.ThenRisnotreflexive,since(a,a)RforallaA(theemptysethasnoelements).However,Risirreflexive.,Wecanidentifyareflexiveorirreflexiverelationbyitsmatrixasfollows:Thematrixofareflexiverelation(自反关系)musthaveall1sonitsmaindiagonal;Thematrixofanirreflexiverelation(非自反关系)musthaveall0sonitsmaindiagonal.,Similarly,wecancharacterizethedigraphofareflexiveorirreflexiverelationasfollows:Areflexiverelation(自反关系)hasacycleoflength1ateveryvertex;Anirreflexiverelation(非自反关系)hasnocyclesoflength1.,AnotherusefulwayofsayingthesamethingusestheequalityrelationonasetA:RisreflexiveifandonlyifR,andRisirreflexiveifandonlyifR=.Finally,wemaynotethatifRisreflexiveonasetA,thenDom(R)=Ran(R)=A.,2.Symmetric(对称),Asymmetric(非对称)andAntisymmetric(反对称)Relations,1.ArelationRonasetAissymmetric(对称的)ifwheneveraRb,thenbRa.ItthenfollowsthatRisnotsymmetricifwehavesomeaandbAwithaRb,butba.,2.ArelationRonasetAisasymmetric(非对称的)ifwheneveraRb,thenba.ItthenfollowsthatRisnotasymmetricifwehavesomeaandbAwithbothaRbandbRa.,Symmetric(对称),Asymmetric(非对称)andAntisymmetric(反对称)Relations,3.ArelationRonasetAisantisymmetric(反对称的)ifwheneveraRbandbRa,thena=b.ThecontrapositiveofthisdefinitionisthatRisantisymmetricifwheneverab,thenaborba.ItfollowsthatRisnotantisymmetricifwehaveaandbinA,ab,andbothaRbandbRa.,Antisymmetric(反对称)Relations,GivenarelationR,weshallwanttodeterminewhichpropertiesholdforR.Keepinmindthefollowingremark:Apropertyfailstoholdingeneralifwecanfindonesituationwherethepropertydoesnothold.,Solution,Symmetry:Ifab,thenitisnottruethatba,soRisnotsymmetric.Asymmetry:Ifab,thenba(bisnotlessthana),soRisasymmetric.Antisymmetry:Ifab,theneitheraborba,sothatRisantisymmetric.,Example2:LetA=Z,thesetofintegers,andletR=(a,b)AA|ab,sothatRistherelationlessthan.IsRsymmetric,asymmetric,orantesymmetric?,Example3:LetAbeasetofpeopleandletR=(x,y)AA|xisacousinofy.ThenRisasymmetricrelation(verify).Example4:LetA=1,2,3,4andletR=(1,2),(2,2),(3,4),(4,1).ThenRisnotsymmetric,since(1,2)R,but(2,1)R.Also,Risnotasymmetric,since(2,2)R.Finally,Risantisymmetric,sinceifab,either(a,b)Ror(b,a)R.,Example5:LetA=Z+,thesetofpositiveintegers,andletR=(a,b)AA|adividesb.IsRsymmetric,asymmetric,orantisymmetric?,Solution:Ifa|b,itdoesnotfollowthatb|a,soRisnotsymmetric.Forexample,2|4,but4|2.Ifa=b=3,say,thenaRbandbRa,soRisnotasymmetric.Ifa|bandb|a,thena=b,soRisantisymmetric.,Relatesymmetric,asymmetric,andantisymmetricpropertiesofarelationtopropertiesofitsmatrix:1.ThematrixMR=mijofasymmetricrelationsatisfiesthepropertythatifmij=1,thenmji=1;Moreover,ifmji=0,thenmij=0.ThusMRisamatrixsuchthateachpairofentries,symmetricallyplacedaboutthemaindiagonal,areeitherboth0orboth1.ItfollowsthatMR=MTR,sothatMRisasymmetrecmatrix.,2.ThematrixMR=mijofanasymmetricrelationRsatisfiesthepropertythatifmij=1,thenmji=0.IfRisasymmetric,itfollowsthatmii=0foralli;thatis,themaindiagonalofthematrixMRconsistsentirelyof0s.Thismustbetruesincetheasymmetricpropertyimpliesthatifmii=1,thenmii=0,whichisacontradiction(矛盾),3.ThematrixMR=mijofanantisymmetricrelationRsatisfiesthepropertythatifij,thenmij=0ormji=0.,Example6:Considerthematricesnext,eachofwhichisthematrixofarelation,asindicated.,RelationsR1andR2aresymmetricsincethematricesMR1andMR2aresymmetricmatrices.RelationR3isantisymmetric,sincenosymmetricallysituated,off-diagonalpositionsofMR3bothcontain1s.Suchpositionsmaybothhave0s,however,andthediagonalelementsareunrestricted.TherelationR3isnotasymmetricbecauseMR3has1sonthemaindiagonal.,RelationR4hasnoneofthethreeproperties:MR4isnotsymmetric.Thepresenceofthe1sinpositions4,1and1,4ofMR4violatesbothasymmetryandantisymmetry.Finally,R5isantisymmetricbutnotasymmetric,andR6isbothasymmetricandantisymmetric.,Thedigraphsofthesethreetypesofrelations:IfRisanasymmetric(非对称)relation,thenthedigraphofRcannotsimultaneouslyhaveanedgefromvertexitovertexjandanedgefromvertexjtovertexi.Thisistrueforanyiandj,andinparticularifiequalsj.Thustherecanbenocyclesoflength1,andalledgesare“one-waystreets.”,IfRisanantisymmetricrelation,thenfordifferentverticesiandjtherecannotbeanedgefromvertexitovertexjandanedgefromvertexjtovertexi.Wheni=j,noconditionisimposed.Thustheremaybecyclesoflength1,butagainalledgesare“oneway.”,Weconsiderthedigraphsofsymmetricrelationsinmoredetail:ThedigraphofasymmetricrelationRhasthepropertythatifthereisanedgefromvertexitovertexj,thenthereisanedgefromvertexjtovertexi.Thus,iftwoverticesareconnectedbyanedge,theymustalwaysbeconnectedinbothdirections.Therefore,itispossibleandquiteusefultogiveadifferentrepresentationofasymmetricrelation:,Wekeeptheverticesastheyappearinthedigraph,butiftwoverticesaandbareconnectedbyedgesineachdirection,wereplacethesetwoedgeswithoneundirectededge,ora“two-waystreet.”Thisundirectededgeisjustasinglelinewithoutarrowsandconnectsaandb.Theresultingwillbecalledthegraphofthesymmetricrelation.,Example7:LetA=a,b,c,d,eandletRbethesymmetricrelationgivenbyR=(a,b),(b,a),(a,c),(c,a),(b,c),(c,b),(b,e),(e,b),(e,d),(d,e),(c,d),(d,c).NotethateachundirectededgecorrespondstotwoorderedpairsintherelationR.,a,c,e,b,d,b,d,e,c,a,GraphofR(b),DigraphofR(a),Anundirectededgebetweenaandb,inthegraphofasymmetricrelationR,correspondstoaseta,bsuchthat(a,b)Rand(b,a)R.Sometimeswewillalsorefertosuchaseta,basanundirectededge(无向边)oftherelationRandcallaandbadjacentvertices(邻接顶点).,AsymmetricrelationRonasetAiscalledconnected(连通的)ifthereisapathfromanyelementofAtoanyotherelementofA.ThissimplymeansthatthegraphofRisallinonepiece(都在一个块中).InFigure4.21weshowthegraphsoftwosymmetricrelations.ThegraphinFigure4.21(a)isconnected,whereasthatinFigure4.21(b)isnotconnected.,c,d,e,b,a,5,4,3,2,1,(a),(b),3.TransitiveRelations传递关系,WesaythatarelationRonasetAistransitive(传递的)ifwheneveraRbandbRc,thenaRc.Itisoftenconvenienttosaywhatitmeansforarelationtobenottransitive.ArelationRonAisnottransitiveifthereexista,b,andcinAsothataRbandbRc,butac.Ifsucha,bandcdonotexist,thenRistransitive.,Example8:LetA=Z,thesetofintegers,andletRbetherelationlessthan.ToseewhetherRistransitive,weassumethataRbandbRc.Thusabandbc.Itthenfollowsthatac,soaRc.HenceRistransitive.Example9:LetA=Z+andletRbetherelationconsideredinExample5.IsRtransitive?,Solution:SupposethataRbandbRc,sothata|bandb|c.Itthendoesfollowthata|c.ThusRistransitive.,Example10:LetA=1,2,3,4andletR=(1,2),(1,3),(4,2).IsRtransitive?,Solution:Sincethereareonelementsa,b,andcinAsuchthataRbandbRc,butac,weconcludethatRistransitive.,Statement:ArelationRistransitiveifandonlyifitsmatrixMR=mijhastheproperty:ifmij=1andmjk=1,thenmik=1.,Theleft-handsideofthisstatementsimplymeansthat(MR)2hasa“1”inpositioni,k.ThusthetransitivityofRmeansthatif(MR)2hasa“1”inanyposition,thenMRmusthavea“1”inthesameposition.Thus,inparticular,if(MR)2=MR,thenRistransitive.Theconverseisnottrue.,Example11:LetA=1,2,3andletRbetherelationonAwhosematrixisShowthatRistransitive.,Solution:Bydirectcomputation,(MR)2=MR;therefore,Ristransitive.,Toseewhattransitivitymeansforthedigraphofarelation,wetranslatethedefinitionoftransitivityintogeometricterms:Ifweconsiderparticularverticesaandc,thecond
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 听读训练考试题及答案
- 天然气管护员考试题库及答案
- 冀教版数学六年级上册1.3 扇形 同步练习(含解析)
- 骨整合电刺激-洞察及研究
- 静脉抽血法试题及答案
- 纪检督察员管理办法
- 财务供热收费管理办法
- it公司取证管理办法
- 营销管理办法明确了
- it数据变更管理办法
- 2022创伤骨科患者围术期下肢静脉血栓形成诊断及防治专家共识
- 《急性亚硝酸盐中毒》课件
- 2024年度企业员工信息安全培训内容
- 《标准施工招标文件》(2007年版)
- led显示屏售后服务承诺书
- 酒店水单模板
- 输尿管镜碎石术
- 园林植物栽培实验课件
- 兽医药理学各论(抗微生物药物)课件(同名386)
- 焊接专业安全技术交底
- 洁净区人员行为规范培训PPT
评论
0/150
提交评论