




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,导入新课,讲授新课,当堂练习,课堂小结,第二十四章解一元二次方程,24.2解一元二次方程,第3课时因式分解法,1.回顾因式分解的相关知识.2.学会用因式分解法解一元二次方程.(重点、难点),问题,导入新课,观察与思考,一元二次方程的一般式是怎样的?常用的求一元二次方程的解的方法有哪些?,(a0),主要方法:(1)配方法(2)公式法,问题1,讲授新课,因式分解:把一个多项式化成几个整式的积的形式.,什么是因式分解?,在学习因式分解时,我们已经知道,可以利用因式分解求出某些一元二次方程的解.,问题2,解下列方程:,(1)x23x0;(2)25x2=16,解:(1)将原方程的左边分解因式,得x(x-3)0;则x=0,或x-3=0,解得x1=0,x2=3.,(2)同上可得x1=0.8,x2=-0.8.,像上面这种利用因式分解解一元二次方程的方法叫做因式分解法.,因式分解法的基本步骤是:若方程的右边不是零,则先移项,使方程的右边为零;将方程的左边分解因式;根据若AB=0,则A=0或B=0,将解一元二次方程转化为解两个一元一次方程.,典例精析,例1解方程:x2-5x+6=0解:把方程左边分解因式,得(x-2)(x-3)=0因此x-2=0或x-3=0.x1=2,x2=3,例2解方程:(x+4)(x-1)=6解把原方程化为一般形式,得x2+3x-10=0把方程左边分解因式,得(x-2)(x+5)=0.因此x-2=0或x+5=0.x1=2,x2=-5.,当堂练习,x2-3x+1=0;3x2-1=0;-3t2+t=0;x2-4x=2;2x2-x=0;5(m+2)2=8;3y2-y-1=0;2x2+4x-1=0;(x-2)2=2(x-2).适合运用直接开平方法;适合运用因式分解法;适合运用公式法;适合运用配方法.,1.填空,2.解下列一元二次方程:(1)(x5)(3x2)=10;(2)(3x4)2=(4x3)2.,解:(1)化简方程,得3x217x=0.将方程的左边分解因式,得x(3x17)=0,x=0或3x17=0解得x1=0,x2=,(2)(3x4)2=(4x3)2.,(2)移项,得(3x4)2(4x3)2=0.将方程的左边分解因式,得(3x4)+(4x3)(3x4)(4x3)=0,即(7x7)(-x1)=0.7x7=0,或-x1=0.x1=1,x2=-1.,3.填空:(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论