(精选幻灯片)最新人教版八年级下册第19章一次函数_第1页
(精选幻灯片)最新人教版八年级下册第19章一次函数_第2页
(精选幻灯片)最新人教版八年级下册第19章一次函数_第3页
(精选幻灯片)最新人教版八年级下册第19章一次函数_第4页
(精选幻灯片)最新人教版八年级下册第19章一次函数_第5页
已阅读5页,还剩35页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第19章一次函数,1,一、内容安排,第十九章一次函数约17课时常量与变量的意义函数的概念和三种表示法一次函数的概念、图象、性质一次函数与方程、不等式的关系一次函数模型,2,19.1变量与函数全章的基础内容(6)19.1.1变量与函数19.1.2函数的图象19.2一次函数全章的重点内容(6)19.2.1正比例函数19.2.2一次函数19.2.3一次函数与方程、不等式19.3课题学习选择方案拓展提高内容(3)怎样选取上网收费方式怎样租车数学活动小结约2课时,3,本章知识结构图,4,1反映函数概念的实际背景,渗透“变化与对应”的思想变化与对应的思想包括两个基本意思:(1)世界是变化的,客观事物中存在大量的变量;(2)在同一个变化过程中,变量之间相互联系,一些变量的变化会引起其他变量的相应变化,这些变量之间存在对应关系.某些变化规律为变量之间满足单值对应的关系,函数就是通过数或形定量地描述这种对应关系的数学工具.“变化与对应”的观点蕴涵于本章内容中.,二、编写时主要考虑的问题,5,19.1节首先从几个实际问题情境入手,引导学生认识函数的基本特征.,6,提炼函数的本质特征,7,函数定义的核心,函数定义是突出变化与对应的,其中主要有两层意思:1两个变量互相联系,一个变量变化时另一个变量也发生变化;2函数与自变量之间是单值对应关系,自变量的值确定后,函数的值是唯一确定的.以上两点是关于函数的最基本、最朴素的刻画,也是教科书关于函数概念的论述中力求能使学生认识的重点内容.,8,人们认识事物往往经历“从特殊到一般”的过程,教科书对本章重点内容的安排正是按照这样的过程展现的.正比例函数是特殊的一次函数,对它的定义、图象和性质的讨论,可以为讨论一般的一次函数奠定基础.,2从特殊到一般地认识一次函数,特殊,一般,9,由特殊到一般地引出正比例函数的图象与性质,10,利用正比例函数认识一次函数的图象和性质,对比两个函数的解析式和图象,引出更深入的思考,11,由两种函数的解析式和图象的关系,引出一次函数的增减性,12,纵观19.2.1节与19.2.2节的联系,可以发现教科书在此展示了解决问题的一种基本策略,即“先特殊化、简单化,再一般化、复杂化”的做法.,温故知新,由简至繁,13,3用函数观点回顾与审视相关内容,加强知识体系的构建,19.2.3小节“一次函数与方程、不等式”从函数的角度对前面学习过的二元一次方程组以及一元一次方程、一元一次不等式等重新进行了分析,这种再认识不是原来水平上的回顾复习,而是站在更高的起点上的动态分析.用一次函数可以把上述几个数学对象统一认识,由此可见函数的重要性.,14,15,16,17,18,4注重联系实际问题,体现数学建模的作用,函数是研究运动变化的重要数学模型,本章教科书中实际问题贯穿于始终(1)有些是作为认识函数概念的实际背景,为抽象概括概念服务的;(2)有些是作为应用举例体现函数的广泛应用性,为培养应用数学解决实际问题的意识和能力服务的.,19,从典型问题情境中引出正比例函数,再列举其他实际问题(略),然后归纳,20,从典型问题情境中引出一次函数,明确指出正比例函数是特殊的一次函数,再列举其他实际问题(略),然后归纳,21,为实际问题建立函数模型,22,23,安排这些内容的目的:(1)突出函数这种数学模型应用的广泛性和有效性;(2)使学生在解决实际问题的情境中灵活运用所学数学知识,进一步提高分析问题和解决问题的综合能力.,24,1重视数学概念中蕴涵的思想,注意引导学生从“运动变化和联系对应”的角度认识函数本章教学应力求体现“变化与对应”的思想,使学生能潜移默化地感触和体会函数内容中最基本的东西,在对数学思想方法的学习方面有所收获.,三、对教学的几点建议,25,通过本章教学,学生应对函数形成初步的正确认识,即认识到虽然函数的表示方法有多种,而且不同问题中函数的具体形式可以形形色色,但是各种函数都是反映变化规律的数学工具,现在学习的函数都是刻画同一个变化过程中两个变量之间的单值对应关系的模型.学习函数概念不能只注重背记定义而不关注它的实质,要使学生理解定义的真正含义,即函数的实质就是它是反映运动变化与联系对应的数学概念.,26,对函数概念的核心“变化与对应”的观点认识,需要分阶段地完成,逐步深化认识程度。本套教科书将对代数函数的学习分三章安排,即八年级下学期学习第19章“一次函数”,九年级上学期学习第22章“二次函数”,九年级下学期学习第26章“反比例函数”。,27,2借助实际问题情景,引导学生由具体到抽象地认识函数;通过函数应用举例,体现数学建模思想,找出问题中相关变量之间的关系,并以数学形式表现这种关系,是用数学模型表示和解决实际问题的关键步骤,而正确地理解问题情境是基础.对一个问题可以从多种角度思考,图象、表格、式子等都是可以借助的工具,用于发现和理清问题中变量之间的关系.,28,在建立函数模型后,还需注意结合问题的实际意义检验模型的合理性.教师应结合实际情况选择更贴近学生生活的问题,引导学生用函数分析解决它们.,29,30,31,3.引导学生重视数形结合的研究方法,教学中,在函数解析式与函数图象的结合方面应有细致的安排设计,注意两者的互补作用,体现两者的联系,突出两者间的转化对分析解决问题的特殊作用.学习了本章之后学生不仅要知道相关函数的图象,更要体验函数图象的作用和数形结合的方法.,32,本章所讨论的对象是函数,函数的表示法之一是图象法,即通过坐标系中的曲线上点的坐标反映变量之间的对应关系.这种表示方法的产生,将数量关系直观化、形象化,提供了数形结合地研究问题的重要方法,这在数学发展中具有重要地位.,33,从直观到抽象,“由形想数”之例,34,数形结合地思考之例,35,4.引导学生关注“四基”,基础知识:函数的基本概念,函数的表示法和一次函数的概念、解析式、图象、性质等.基本技能:会画一次函数(包括正比例函数)的图象,能结合图象讨论这些函数的增减性质等.基本能力:能利用一次函数分析和解决简单实际问题.基本思想方法:变化对应,模型,数形结合.基本活动经验:特殊-一般,探究式学习.,36,例如,第19.1节中对于描点法画函数图象的一般步骤进行了归纳,这对后续学习其他函数内容很重要,应使学生熟悉它.,37,例如,用待定系数法确定一次函数的表达式,关系到图象到解析式的转化,涉及方程组与函数的联系,对提高学生的综合数学能力很有益.,38,5.结合课题学习,引导学生提高实践意识与综合应用数学知识的能力,“课题学习选择方案”具有特殊的地位和作用.这些问题具有实践性、综合性、探究性、趣味性,是检验和提高学习能力的较好素材.本节教学应

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论