




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的1甲乙两人独立的解同一道题,甲乙解对的概率分别是,那么至少有1人解对的概率是 ( D )A. B. C. D.2从数字1, 2, 3, 4, 5这五个数中, 随机抽取2个不同的数, 则这2个数的和为偶数的概率是 ( B )A. B. C. D. 3有2n个数字,其中一半是奇数,一半是偶数,从中任取两个数,则所取的两数之和为偶数的概率是( C )A、 B、 C、 D、21世纪教育网4圆的圆心坐标是( B )A B C D 5有10名学生,其中4名男生,6名女生,从中任选2名学生,恰好是2名男生或2名女生的概率是 ( C )A BC D21世纪教育网6已知P箱中有红球1个,白球9个,Q箱中有白球7个,(P、Q箱中所有的球除颜色外完全相同)现随意从P箱中取出3个球放入Q箱,将Q箱中的球充分搅匀后,再从Q箱中随意取出3个球放入P箱,则红球从P箱移到Q箱,再从Q箱返回P箱中的概率等于 ( B )AB CD7一圆锥侧面展开图为半圆,平面与圆锥的轴成角,则平面与该圆锥侧面相交的交线为A. 圆 B. 抛物线 C. 双曲线 D. 椭圆1. D 圆锥侧面展开图中心角,母线与轴的夹角为30,而平面与圆锥的轴成45,4530,所以截线是椭圆.8圆内接三角形角平分线延长后交外接圆于,若,则( )A. 3 B. 2 C. 4 D. 1A ,又,得,从而.9某人射击命中目标的概率为0.6,每次射击互不影响,连续射击3次,至少有2次命中目标的概率为 ( )A. B. C. D. 答案:B。解析:。10将三颗骰子各掷一次,设事件A=“三个点数都不相同”,B=“至少出现一个6点”,则概率等于 ( )A、 B、 C、 D、答案:A。解析:二、填空题:本大题共5个小题,每小题5分,共25分11某商场开展促销抽奖活动,摇出的中奖号码是8,2,5,3,7,1,参加抽奖的每位顾客从09这10个号码中任意抽出六个组成一组,若顾客抽出的六个号码中至少有5个与摇出的号码相同(不计顺序)即可得奖,则中奖的概率是_12某中学的一个研究性学习小组共有10名同学,其中男生x名(3x9),现从中选出3人参加一项调查活动,若至少有一名女生去参加的概率为f(x),则f(x)max= _ _13如图所示,AC为O的直径,BDAC于P,PC=2,PA=8,则CD的长为 ,cosACB= .答案 2 14.如图所示,圆O的直径AB=6,C为圆周上一点,BC=3.过C作圆的切线l,过A作l的垂线AD,AD分别与直线l、圆交于点D、E,则DAC= ,线段AE的长为 .答案 30 315一次单元测试由50个选择题构成,每个选择题有4个选项,其中恰有一个是正确的答案,每题选择正确得3分,不选或选错得0分,满分150分.学生甲选对任一题的概率为0.8,则该生在这次测试中成绩的期望值是_,标准差是_.答案 120 三解答题16如图所示,过圆O外一点M作它的一条切线,切点为A,过A点作直线AP垂直于直线OM,垂足为P.21世纪教育网(1)证明:OMOP=OA2;21世纪教育网(2)N为线段AP上一点,直线NB垂直于直线ON,且交圆O于B点.过B点的切线交直线ON于K.证明:OKM=90.证明 (1)因为MA是圆O的切线,所以OAAM.又因为APOM,在RtOAM中,由射影定理知,OA2=OMOP.(2)因为BK是圆O的切线,BNOK,同(1),有OB2=ONOK,又OB=OA,所以OPOM=ONOK,即=.又NOP=MOK,所以ONPOMK,故OKM=OPN=90.17已知曲线的参数方程为(为参数),曲线的极坐标方程为(1)将曲线的参数方程化为普通方程,将曲线的极坐标方程化为直角坐标方程;(2)曲线,是否相交,若相交请求出公共弦的长,若不相交,请说明理由解:(1)由得曲线的普通方程为,即曲线的直角坐标方程为(分)(2)圆的圆心为,圆的圆心为两圆相交设相交弦长为,因为两圆半径相等,所以公共弦平分线段公共弦长为(10分)18为了考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校的高中生中随机地抽取了300名学生进行调查,得到如下列联表:21世纪教育网喜欢数学不喜欢数学总计男3785122女3521世纪教育网143178总计72228300由表中数据计算,判断高中生的性别与是否喜欢数学课程之间是否有关系,并说明理由.解:可以有95%的把握认为“高中生的性别与是否喜欢数学课程之间有关系”,作出这种判断的依据是独立性检验的基本思想,具体过程为:喜欢数学不喜欢数学总计男aba+b女cdc+d总计a+cb+da+b+c+d分别用a,b,c,d表示喜欢数学的男生数、不喜欢数学的男生数、喜欢数学的女生数、不喜欢数学的女生数。如果性别与是否喜欢数学有关系,则男生中喜欢数学的比例与女生中喜欢数学的比例应该相差很多,即应很大,将上式等号右边的式子乘以常数因子,然后平方计算得:,其中因此,越大,“性别与是否喜欢数学课程之间有关系”成立的可能性就越大。另一方面,假设“性别与是否喜欢数学课程之间没有关系”,由于事件“”的概率为因此事件A是一个小概率事件。而由样本计算得,这表明小概率事件A发生了,由此我们可以断定“性别与是否喜欢数学之间有关系”成立,并且这种判断出错的可能性为5%,约有95%的把握认为“性别与是否喜欢数学课程之间有关系”。19一个袋中有大小相同的标有1,2,3,4,5,6的6个小球,某人做如下游戏,每次从袋中拿一个球(拿后放回),记下标号。若拿出球的标号是3的倍数,则得1分,否则得分。(1)求拿4次至少得2分的概率;(2)求拿4次所得分数的分布列和数学期望。 解(1)设拿出球的号码是3的倍数的为事件A,则,拿4次至少得2分包括2分和4分两种情况。,(2)的可能取值为,则;分布列为P-4-202420在某社区举办的2008奥运知识有奖问答比赛中,甲、乙、丙三人同时回答一道有关奥运知识的问题,已知甲回答对这道题的概率是,甲、丙两人都回答错的概率是,乙
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 复合合成纤维生产建设项目招商引资报告
- 甲乙丙三方国有企业股权转让及员工持股计划协议
- 物业管理权移交与社区公共设施维修服务合同
- 离婚协议中子女户口迁移及监护权共享协议
- 珠海住房公积金贷款违约责任及合同赔偿细则
- 离婚协议执行受阻起诉范本与维权策略分析
- 汽车美容店租赁合同(含行业规范与政策支持)
- 医药研发机构科研人员聘用与成果转化合同
- 活化酯生产线建设项目规划设计方案
- 体育中心改建项目商业计划书
- 2025公需课《人工智能赋能制造业高质量发展》试题及答案
- 图书销售合同合同
- 除数是整数的小数除法练习课
- 东芝电梯CV180故障诊断
- 毕业设计住宅楼采暖系统设计
- 三年级上册数学课件-5 间隔排列|苏教版
- 退伍军人职业规划课件
- 洗眼器教育培训
- 调查研究方法与调研报告写作讲义课件
- 干燥综合症的中医治疗冯兴华公开课课件
- 关于开具无犯罪记录证明的函(模板)
评论
0/150
提交评论