数学北师大版八年级上册探索勾股定理(1).ppt_第1页
数学北师大版八年级上册探索勾股定理(1).ppt_第2页
数学北师大版八年级上册探索勾股定理(1).ppt_第3页
数学北师大版八年级上册探索勾股定理(1).ppt_第4页
数学北师大版八年级上册探索勾股定理(1).ppt_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

探索勾股定理,思考,12,9,如图,强大的台风使得一根旗杆在离地面9米处折断倒下,旗杆顶部落在离旗杆底部12米处.旗杆折断之前有多高?,想一想,你需要求那些线段长度,这些长度能确定吗?,(1)观察图1-1正方形A中含有.个小方格,即A的面积是个单位面积.,正方形B的面积是个单位面积.,正方形C的面积是个单位面积.,9,9,9,18,你是怎样得到上面的结果的?与同伴交流交流.,(2),做一做,正方形周边上的格点数a=12,正方形内部的格点数b=13,利用皮克公式,所以,正方形C的面积为:(单位面积),图1-1,图1-2,方法1,分割成若干个直角边为整数的三角形,(单位面积),方法2,(单位面积),把C看成边长为6的正方形面积的一半,方法3,(2)在图1-2中,正方形A,B,C中各含有多少个小方格?它们的面积各是多少?,(3)你能发现图1-1中三个正方形A,B,C的面积之间有什么关系吗?,SA+SB=SC,即:两条直角边上的正方形面积之和等于斜边上的正方形的面积,(3),(1)观察图1-3、图1-4,并填写右表:,A的面积(单位面积),B的面积(单位面积),C的面积(单位面积),图1-3,图1-4,16,9,25,4,9,13,做一做,分割成若干个直角边为整数的三角形,(面积单位),(2)三个正方形A,B,C的面积之间有什么关系?,SA+SB=SC,即:两条直角边上的正方形面积之和等于斜边上的正方形的面积,(1)你能用三角形的边长表示正方形的面积吗?,(2)你能发现直角三角形三边长度之间存在什么关系吗?与同伴进行交流.,(3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.(2)中的规律对这个三角形仍然成立吗?,议一议,勾股定理(gou-gutheorem),如果直角三角形两直角边分别为a、b,斜边为c,那么,即直角三角形两直角边的平方和等于斜边的平方.,勾,股,弦,小明的妈妈买了一部29英寸(74厘米)的电视机.小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了.你能解释这是为什么吗?,售货员没搞错,荧屏对角线大约为74厘米,做一做,说说这节课你有什么收获?,内容总结:探索直角三角形两直角边的平方和等于斜边的平方;利用勾股定理解决实际问题.,方法总结:数方格看图找关系,利用面积不变的方法;用直角三角形三边表示三个正方形面积观察归纳发现勾股定理任意画一个直角三角形,再验证自己的发现.,小结,延伸拓展,1、情境引入中的“围地”问题.,2、如图,一艘船在A处要到达小岛B处,但AB之间有暗礁,为了行船安全,船先向正西方向行驶了400海里,再向正南方向行驶了300海里便到达了小岛B,请你计算A与B之间的直线距离是多少?,3、高速公路上有A、B两站相距25km,C、D为两个小集镇,DAAB与A,CBAB与B,已知DA15km,CB10km,现在要在公路AB边上建设一个土特产收购站E,使得C、D两镇到E站的距离相等,则E站应建在距A站多少千米处?,D,一、P6习题1.1第1、2、3、4题,二、准备4张全等的直角三角形纸片,作业,我国数学家华罗庚曾经建议,要探知其他星球上有没有“人”,我们可以发射下面的图形,如果他们是“文明人”,必定认识这种“语言”.,史话勾股定理,a,b,c,勾股定理,勾股定理:,A,B,C,直角三角形中,两直角边a、b的平方和等于斜边c的平方,即,+=,在中国古代大约是战国时期西汉的数学著作周髀算经中记录着商高同周公的一段对话.商高说:“故折矩,勾广三,股修四,经隅五.”商高这段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5.以后人们就简单地把这个事实说成“勾三股四弦五”.故称之为“勾股定理”或“商高定理”.,在西方,希腊数学家欧几里德(Euclid,是公元前三百年左右的人)在编著几何原本时,认为这个定理是毕达哥达斯最早发现的,所以他就把这个定理称为“毕达哥拉斯定理”,以后就流传开了.,毕达哥拉斯(Pythagoras)是古希腊数学家,他是公元前五世纪的人,比商高晚出生五百多年,相传,毕达哥拉斯学派找到了勾股定理的证明后,欣喜若狂,杀了一百头牛祭神,由此,又有“百牛定理”之称.,公元1945年,人们惊奇地发现了一份古巴比伦人的数学手稿,据考证,其年代远在商高和毕达哥拉斯之前,大致在公元前18世纪.手稿中难以令人置信地列出了15组勾股数,如下表:,这些数,即使在今天也远不是人人都很熟悉,天晓得古巴比伦人当时是怎样弄到这些数的!如果考古学家坚信自己没有弄错历史年代的话,那么上面的史实表明:在世界的其他地方还不知道3、4、5的关系的时期,古巴比伦人就已经有了一个相当

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论