




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二次根式的知识点汇总知识点一: 二次根式的概念形如()的式子叫做二次根式。注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,等是二次根式,而,等都不是二次根式。知识点二:取值范围1. 二次根式有意义的条件:由二次根式的意义可知,当a0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。2. 二次根式无意义的条件:因负数没有算术平方根,所以当a0时,没有意义。知识点三:二次根式()的非负性()表示a的算术平方根,也就是说,()是一个非负数,即0()。注:因为二次根式()表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0。知识点四:二次根式()的性质()文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。注:二次根式的性质公式()是逆用平方根的定义得出的结论。上面的公式也可以反过来应用:若,则,如:,.知识点五:二次根式的性质文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。注:1、化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即;若a是负数,则等于a的相反数-a,即;2、中的a的取值范围可以是任意实数,即不论a取何值,一定有意义;3、化简时,先将它化成,再根据绝对值的意义来进行化简。知识点六:与的异同点1、不同点:与表示的意义是不同的,表示一个正数a的算术平方根的平方,而表示一个实数a的平方的算术平方根;在中,而中a可以是正实数,0,负实数。但与都是非负数,即,。因而它的运算的结果是有差别的,而2、相同点:当被开方数都是非负数,即时,=;时,无意义,而.知识点七:同类二次根式二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。知识点八:二次根式的运算: (1)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式(2)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式=(a0,b0); (b0,a0)(3)有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算练习题 (做出正确选择 并写出题目的知识点)1.下列二次根式中,x的取值范围是的是( )A. B. C. D.2. 要使式子 2-x 有意义,则x的取值范围是()Ax0 Bx-2 Cx2 Dx23.下列二次根式中,是最简二次根式的是( ) A. B. C. D.4.若,则( )Aa B. a C. a D. a5.下列二次根式,不能与合并的是( ) A. B. C. D.7. 如果最简二次根式与能够合并,那么的值为( ) A. 2 B. 3 C. 4 D. 58.已知y=2x-5+5-2x-3 , 则的值为( )A B C D.9.下列各式计算正确的是( )A.83-23=6 B.53+52=105C.4322=86 D.4222=2210.等式成立的条件是( )A. B. C.x1 D. x-111.下列运算正确的是( )A. B. C. D.12.已知是整数,则正整数的最小值是( )A.4 B.5 C.6 D.214.化简: ; = .15.计算:32-3-24-6-3= .16. 比较大小: 3; _ . 17已知:一个正数的两个平方根分别是和,则的值是 18.计算:12-3= _; = 19.已知、为两个连续的整数,且,则 20.直角三角形的两条直角边长分别为2 cm 、10 cm,则这个直角三角形的斜边长为_cm,面积为_ cm2.21.若实数满足,则的值为 .22. 已知实数x,y满足|x-4|+ y-8 =0,则以x,y的值为两边长的等腰三角形的周长是 24.(6分)计算:(1) ; (2) ;(3) |-6|- 9 (-1)2; (4)33 - (3)2+(+3)0-27+3-2.25.(6分)先化简,再求值:a-1+(a21),其中a=1.26.(6分)先化简,后求值:,其中.27.(6分)已知,求下列代数式的值: (
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 车辆风险押金合同协议
- 还贷免责协议书模板
- 建筑设计与施工合同及协议
- 历史文化保护与传承的试题研究
- 《当代生产管理策略》课件
- 猪肉购销合同
- 民政合作协议书
- 语培课程合同协议书模板
- 返建房房屋合同补充协议
- 车场使用协议书范本
- 建设工程前期工作咨询费收费计算表
- 中国糖尿病肾脏病防治指南(2021年版)
- 八年级物理下册《实验题》专项练习题及答案(人教版)
- 中学生诗词知识大赛备考题库(500题)
- 《动画素描》第一章 动画素描概述
- 无轨胶轮车运行标准作业流程
- 2023年山东大学考博英语完型填空和阅读试题
- 俄罗斯地缘政治学
- GB/T 12513-2006镶玻璃构件耐火试验方法
- 2023年云南省昆明市中考英语模试卷(含答案解析)
- 公路工程施工现场安全检查手册
评论
0/150
提交评论