




已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
从一维一次方程、3.1.1一维一次方程(第二课)、3.1式理解方程、一维一次方程、学习目标要求、知识和技能1 .方程的概念,掌握一维一次方程的概念2 .理解方程的解和解方程的意义的过程和方法是体验和理解实际问题,抽象成数学问题的过程。 感情、态度和价值观在解决问题的过程中体会到同学之间合作和交流的重要性。 一元一次方程式,复习评论:1 .什么是方程式? 举例说明。 方程式的概念:包含未知数的方程式叫方程式。 例如:5 x-7=8,5 x=10,一维一次方程式,基础强化,以下各式是方程式的画,不同的画:3x-2=7; 48=123 x-62 m-3 n=05 x2-2x-1=0x 23强调判断:方程式,必须看到两点,一个包含方程式,两个包含未知数,两个包含一维一次方程式,两列方程式,首先用字母表示,写出包含问题关系的方程式-方程式。 复习复习:未知数,等于未知数,一维一次方程式:长24cm用铁丝包围正方形,正方形边长为多少cm?列方程式,4x=24 .解:为正方形边长为xcm。 问题1,一元一次方程式,解:假设x后该计算机的使用时间达到2450小时,x月该计算机的使用时间就问题而言,列方程式: 1700 150 x=2450,问题2 :计算机使用1700小时,预计每月使用150小时,何月该计算机的使用时间达到规定的检修时间2450小时? 已经使用的时间使用预定时间150 x时间=规定的检查时间2450小时.等价关系:150 x,一维一次方程式,解:设该学校的学生数为x,则女生数为男生数,男生数相等的关系:女生数-男生数=80,列方程式:0.52x-(1-0.52)x=80, 0.52x、(1-0.52)x、一次方程式、协同交流通过解决上述问题,得到下式4x=24、1700 150 x=2450、0.52x-(1-0.52)x=80 . 请同学们观察讨论,上面的方程式有什么共同特征? (1)以上的各方程式只包含一个未知数(元)。 (2)未知数的指数均为一次。 (3)方程式的两侧都是整式的(分母中不包含未知数)。 一维一次方程的概念:只包含一个未知数,未知数的指数都是1,等号的两侧都是正式的,该方程称为一维一次方程,利用一维一次方程,下一个方程为一维一次方程的: ()5 x4x=112 xy=5x2-5x6=0, 注意:一维一次方程只能满足三个:未知数未知数的指数为1方程的两侧都是整式(分母中不包含未知数)。 因此,将X=5称为方程式1700 150 x=2450的解,将X=3代入方程式的左边1700x=17001503=2150、左边右边时,在上述的算法中,在x=4、5、6的情况下会怎样,方程式的解:一维一次方程式,x=1000和x=2000的哪一个为方程式0 另外,在解:x=1000的情况下,方程式的左边=0. 52525252000-(1-0. 52 ) 1000=520-480=40,方程式的左边右边,因此x=1000不是方程式0.52x-(1-0.52)x=80的解。 另外,在x=2000的情况下,方程式的左边=0.522000-(1- 0.52 ) 2000=1040-960=80,方程式的左边=右边,因此,x=2000是方程式0.52x-(1-0.52)x=80的解。 一维一次方程式,x=2是方程式x-10=4x的解。 方程式12 )x-3 )1=2x3的解是x=3.正误:要判断错误,可以简单总结一下检验一个数是否是方程式的解的步骤吗? 加强训练,(式12 )x-3 )1=2x3的解为x=3.式12 )x-3 )1=2x3的解为x=3.式12 )x-31=2x3的解为x=3.一维一次方程式,总结:验证数值是否为方程式的解:1 2 .将数值代入方程式的右边进行计算。3 .比较左右的值,左边=右边为方程式的解,否则为一次方程式,强化练习:根据以下问题,设定未知数,列举方程式,指出是否有一次方程式: (1)环状跑道的一周长400m,沿着跑道跑多少圈,可以跑3000m? (2)梯形下底比上底多2cm,高5cm,面积40cm2,求上底的长度试着做。 一维一次方程式,练习:根据下列问题设定未知数,列举方程式,指出一维一次方程式: (1)环状跑道的一周长为400m,在跑道上跑几圈,能跑3000m吗? (2)梯形下底比上底多2cm,高5cm,面积40cm2,求上底.解: (1)绕程x圈。 (2)上底为xcm,下底为(x 2)cm .一维一次方程式,1.适当设定未知数,用文字x表示问题中的未知量,3 .列:利用实际问题中的等价关系列举方程式, 2.3:寻找实际问题中等值关系的一维一次方程的一般步骤3360,一维一次方程,总结本节课程中学习有关
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 市政供热老旧管网改造工程节能评估报告
- 煤炭仓储物流项目节能评估报告
- 机械拆除与人工拆除配合方案
- 2025年关于轴承考试试题及答案
- 氢能电源生产线项目技术方案
- 起重设备安装项目成本控制方案
- 足疗理论考试题目及答案
- 住宅小区物业股权转让及业主权益保障协议
- 离婚协议经典样本:婚姻终止财产分配与子女监护协议
- 液化空气储能空分技术经济性分析与评估
- 旅馆消防安全灭火疏散应急预案模版(3篇)
- 手术室7s管理规范
- 员工赔偿金保密协议书(2篇)
- 中华人民共和国保守国家秘密法实施条例
- Profinet(S523-FANUC)发那科通讯设置
- 汽车吊维保记录
- 内容创作者合作协议
- 肋骨骨折手术护理配合
- 机房网络改造升级方案
- 函数的单调性与最值课件高三数学一轮复习
- 灌区续建配套与节水改造工程施工组织设计
评论
0/150
提交评论